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1. Introduction 

A growing number of theoretical and empirical papers has emphasized leverage, financial accelerator effects and housing

prices as central elements to understand the boom and bust period that ended with the Great Recession. 1 In many of these

papers, the key mechanism linking housing prices and economic activity is the role of housing wealth as collateral for

borrowing. As housing prices rise, household borrowing rises, fueling a debt–driven consumption boom. As housing prices

decline, households are forced to borrow less, and the deleveraging pushes the economic contraction into overdrive. 

We evaluate the aggregate implications of this mechanism using a DSGE model and a novel approach. The starting point

is the idea that financial frictions matter disproportionately more in a recession than in a boom. Our novel approach is to

use Bayesian methods to estimate a model which allows for, but does not impose, asymmetric effects of housing booms
� The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board 

of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System. Stedman Hood, Aaron Markiewitz and 

Walker Ray performed superb research assistance. The authors thank Jesus Fernandez-Villaverde, Giorgio Primiceri, Amir Sufi and seminar participants for 

comments and suggestions. Supplementary material and replication codes are available on the authors’ webpages. 
∗ Corresponding author. 

E-mail addresses: luca.guerrieri@frb.gov (L. Guerrieri), matteo.iacoviello@frb.gov (M. Iacoviello). 
1 See, for instance, Mian and Sufi (2011) , Guerrieri and Lorenzoni (2011) , Justiniano et al. (2015) , Ng and Wright (2013) , Eggertsson and Krugman (2012) , 

Midrigan and Philippon (2016) , and Korinek and Simsek (2016) . 
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and busts, depending on whether housing collateral constraints are binding or not. Our estimates point to these asymmetric

effects as a central mechanism to explain not just the depth of the Great Recession, but also the events that led to it. As

the housing boom unfolded, collateral constraints turned slack, and expanding housing wealth made a small contribution

to consumption growth. By contrast, the subsequent housing collapse tightened the constraints and, more than the zero

lower bound (ZLB) on nominal interest rates, sharply exacerbated the Great Recession. Moreover, this asymmetry is not just

a feature of the estimated model based on aggregate U.S. data. Evidence from both state- and MSA-level data shows that

various measures of regional activity, including consumption, are more sensitive to housing prices when housing prices are

low than when they are high. 

To our knowledge, this paper is the first to combine key elements of the crisis, such as leverage, occasionally binding

collateral constraints, house price fluctuations, and the ZLB, within a setting rich enough to tackle full information estima-

tion. The amplification of the declines in house prices due to collateral constraints and deleveraging was very large in the

20 07–20 09 period, with collateral constraints accounting for about 70% of the observed decline in consumption. Without

collateral constraints, for instance, the recession would have been curbed to such an extent that the Federal Funds rate

would not have reached zero. Additionally, although the estimated model does not directly use data on household debt,

the degree of cyclical variation in empirical and model-based measures of borrowing and leverage are remarkably similar,

providing further support for the paper’s findings. 

At the core of our analysis is a standard monetary DSGE model augmented to include a housing collateral constraint

along the lines of Kiyotaki and Moore (1997) , Iacoviello (2005) , and Liu et al. (2013) . As in these papers, housing serves the

dual role of durable good and collateral for borrowers. To this framework, we add two empirically realistic elements that

generate important nonlinearities. First, the housing collateral constraint binds only occasionally, rather than at all times.

Second, in line with recent U.S. experience, monetary policy is constrained by the ZLB. We use Bayesian estimation methods

to validate the nonlinear dynamics of the model against quarterly U.S. data. The estimation involves inferring when the

collateral constraint is binding, and when it is not, through observations that do not include the Lagrange multiplier for the

constraint. Our model has the property that house price movements matter little for economic aggregates when borrowing

constraints are slack. By contrast, when the constraints are binding, the interaction of house prices with borrowing and

spending decisions has a first-order effect on the macroeconomy, especially when monetary policy is unable to adjust the

interest rate. 

Most importantly, the model fits the data better than two competing alternatives, one without collateral constraints, and

one where collateral constraints always bind. Without the collateral constraint, the model collapses to a standard monetary

business cycle model, like in Christiano et al. (2005) and Smets and Wouters (2007) . Such a model omits the housing

collateral channel and needs to layer, on top of the shocks driving housing prices, a collective attack of patience – in the form

of implausibly large negative consumption preference shocks – to fit aggregate consumption during the Great Recession.

Nonetheless, this attack of patience, as well as other potential alternatives such as technology shocks, has little bearing on

housing prices, which still require their independent source of variation, reducing the likelihood of that model. 

A model with permanently binding collateral constraints faces unpleasant trade-offs, too. It misses the asymmetry in

the relationship between house prices and consumption, so that by matching the expansion in consumption during the

housing boom preceding the Great Recession, it ends up overstating the consumption collapse. Moreover, this model misses

an important channel of propagation. At the peak of the housing cycle, the expansion in housing wealth relaxes collateral

constraints, so that households can initially rely on borrowing to buffet any drop in consumption associated with falling

house prices. Only after house prices continue falling, do borrowing constraint start to bind, and consumption and house

prices comove more notably. 

Support in favor of the asymmetries uncovered by the model also comes from our analysis using regional data. State- and

MSA-level data confirm the asymmetric estimates based on national data. The sensitivity to house prices of expenditures

– and other measures of economic activity – is about twice as large when house prices are low than whey they are high,

confirming the relevance of the key mechanism at the center of our aggregate model. 

A spate of recent papers has quantified the importance of financial shocks and frictions using a general equilibrium

framework. Recent notable examples include Del Negro et al. (2017) , Gertler and Karadi (2011) , Jermann and Quadrini (2012) ,

Christiano et al. (2014) . The common thread among these papers is that financial shocks and frictions –including shocks and

frictions in models with an explicit intermediation sector– are key elements of the Great Recession. The occasionally binding

nature of the constraints and the estimation approach applied to a nonlinear DSGE model are the two elements that set our

work apart. In our model, financial constraints endogenously become slack or binding, thus mimicking the role of time-

varying financial shocks (or capital quality shocks) in models with an otherwise constant set of financial constraints. In

this respect, our work extends the basic mechanisms in Mendoza (2010) who also considers occasionally binding financial

constraints in a calibrated small open economy setting with an exogenous interest rate. Our extensions make it possible to

construct quantitative counterfactual exercises and to consider policy alternatives in an empirically validated model for the

United States. 2 One application of the paper uses the estimated model to gauge the effects of policies aimed at the housing

market in the context of a deep recession. 
2 Gust et al. (2017) estimate a nonlinear DSGE model that takes into account the ZLB on nominal interest rates, but do not consider financial frictions. 

Bocola (2016) estimates a small-open economy model for Italy, including financial frictions and occasionally binding funding constraints for banks. 



30 L. Guerrieri, M. Iacoviello / Journal of Monetary Economics 90 (2017) 28–49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A growing body of empirical evidence points to a prominent role for housing price declines in influencing borrowing,

consumption, and other aggregate measures of economic activity. For instance, recent contributions include Case et al.

(2005) , Campbell and Cocco (2007) , Mian and Sufi (2011) , Abdallah and Lastrapes (2012) and Mian et al. (2013) . These

contributions have not attempted to disentangle the root causes of the Great Recession with a general equilibrium approach

that can account for the role of non-housing shocks, monetary policy, and the amplification channels connected to the zero

lower bound on nominal interest rates. Moreover, the link between housing prices and economic activity in this body of

work relies on the collateral role of housing wealth. Nonetheless, this work has not emphasized that such a channel implies

asymmetric relationships for house price increases and declines with borrowing and other measures of aggregate activity,

depending on whether collateral constraints bind or not. Our paper is also related to the work of Lustig and van Nieuwer-

burgh (2010) , who find that in times when U.S. housing collateral is scarce nationally, regional consumption is about twice

as sensitive to income shocks. However, the channel they emphasize – time variation in risk-sharing among regions – is

different from ours. Finally, our paper is also related to Cao and Nie (2017) , who attempt to disentangle the amplification

mechanisms related to market incompleteness from those related to occasionally binding constraints. 

2. The basic model: collateral constraints and asymmetries 

To fix ideas regarding the fundamental asymmetry introduced by collateral constraints, it is useful to consider a basic

model and analyze its implications for how consumption responds to changes in house prices. In this section, general equi-

librium links are sidestepped and the price of housing is assumed to be exogenous. These assumptions are relaxed in the

DSGE model of the next section. 

Consider the problem of a household that has to choose profiles for goods consumption c t , housing h t , and borrowing b t .

The household’s problem is to maximize 

E 0 

∞ ∑ 

t=0 

βt ( log c t + j log h t ) , (1) 

where E 0 is the conditional expectation operator. The household is subject to the following constraints: 

c t + q t h t = y + b t − Rb t−1 + q t ( 1 − δh ) h t−1 , (2) 

b t ≤ m q t h t , (3) 

log q t = ρq log q t−1 + ε q,t . (4) 

Eq. (2) is the budget constraint. Income y is fixed and normalized to one. The term b t denotes one-period debt. The gross

one-period interest rate is R . Housing, which depreciates at rate δh , has a price q t in units of consumption. Eq. (3) is a

borrowing constraint that limits borrowing to a maximum fraction m of housing wealth. Eq. (4) describes the price of

housing, q t , which follows an AR(1) stochastic process, where εq , t is a zero-mean, i.i.d. process with variance σ 2 
q . 

Denoting with λt ≥ 0 the Lagrange multiplier on the borrowing constraint, the Euler equation for consumption can be

written as: 

1 

c t 
= βRE t 

(
1 

c t+1 

)
+ λt . (5) 

Solving this equation for consumption and iterating forward yields: 

c t = 

1 

λt + βRE t ( λt+1 ) + ( βR ) 
2 
E t ( λt+2 ) + . . . . 

. (6) 

Expressing the Euler equation as above shows that current consumption depends negatively on current and future ex-

pected borrowing constraints. Increases in q t loosen the borrowing constraint. So long as they λt stays positive, increases

and decreases in q t have roughly symmetric effects on c t . However, large enough increases in q t lead to a fundamental

asymmetry. The multiplier λt cannot fall below zero. Consequently, large increases in q t can bring λt to its lower bound and

will have proportionally smaller effects on c t than decreases in q t . Intuitively, an impatient borrower prefers a consumption

profile that is declining over time. A temporary jump in house prices enables such a profile (high consumption today, low

consumption tomorrow), without borrowing all the way up to the limit. 

More formally, the household’s state at time t is its housing h t−1 , debt b t−1 and the current realization of the house price

q t . The optimal decisions are given by the consumption choice c t = C ( q t , h t−1 , b t−1 ) , the housing c hoice h t = H ( q t , h t−1 , b t−1 )
and the debt choice b t = B ( q t , h t−1 , b t−1 ) that maximize expected utility subject to (2) and (3), given the house price process.

Fig. 1 shows the optimal leverage and the consumption function obtained from the model outlined above. 3 As the figure
3 The policy functions in Fig. 1 are obtained via value function iteration. The calibrated parameters are β = 0 . 99 , j = 0 . 12 , m = 0 . 9 , R = 1 . 005 , δ = 0 . 01 . 

The resulting steady-state ratio of housing wealth to annual income ratio is 1.5. For the house price process we set ρq = 0 . 96 and σq = 0 . 0175 , in order to 

match a standard deviation of the quarterly growth rate of house prices equal to 1.77%, as in the data. 
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Fig. 1. House prices and consumption in the basic model. 

Note : The figure shows the optimal choices of leverage and consumption as a function of the housing price for three different levels of debt, low, normal 

and high, when housing is at its nonstochastic steady-state value. In the top panel, low house prices move the household closer to the maximum borrowing 

limit given by m = 0 . 9 . This is more likely to happen at high levels of debt (thick line). In the bottom panel, the higher house prices are, the more likely is 

the household not to be credit constrained, and the consumption function becomes flatter. At high levels of debt, the household is constrained for a larger 

range of realizations of house prices, and the consumption function is steeper when house prices are low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

illustrates, high house prices are associated with slack borrowing constraints, and with a lower sensitivity of consumption

to changes in house prices. Instead, when household borrowing is constrained – an outcome that is more likely when house

prices are low and the initial stock of debt is high – the sensitivity of consumption to changes in house prices becomes

large. This idea is developed further both in the DSGE model and in the empirical analysis to follow. 

3. The DSGE model: demand effects in general equilibrium 

To quantify the importance of the asymmetric relationship between house prices and consumption, the basic mechanisms

described in Section 2 are embedded in an estimated general equilibrium model. The starting point is a standard monetary

DSGE model along the lines of Christiano et al. (2005) and Smets and Wouters (2007) . The model features nominal wage

and price rigidities, a monetary authority using a Taylor rule, habit formation in consumption and investment adjustment

costs. 4 To this framework we add three main elements. First, housing has a dual role: it is a durable good (which enters the

utility function separately from consumption and labor), and it serves as collateral for “impatient” households. The supply of

housing is fixed (its price varies endogenously), but housing reallocation takes place across “patient” and “impatient” house-

holds in response to an array of shocks. Second, the collateral constraint on borrowing is allowed to bind occasionally. The

estimation exercise allows inferring when the constraint binds using observations that do not include the hidden Lagrange

multiplier on the constraint. Third, in line with the U.S. experience since 2008, monetary policy is potentially constrained

by the zero lower bound. 

Our assumption that housing is in fixed supply and plays no role in production (unlike in Iacoviello and Neri, 2010 and

Liu et al., 2013 ) has the advantage that the model behaves essentially like the ones in Christiano et al. (2005) and Smets

and Wouters (2007) when the borrowing constraint is slack. With a slack borrowing constraint, housing prices only passively

respond to movements in the macroeconomy, but play no feedback effect on other macro variables. 

The rest of this section describe the key model features. Appendix B provides additional details as well as a list of all the

necessary conditions for an equilibrium. 
4 The benchmark model abstracts from trends, excludes neutral technology shocks, and assumes fixed capacity utilization. All these assumptions –which 

have little bearing on the main results – are relaxed as part of sensitivity analysis presented in Appendix E. 
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3.1. Households 

There is a continuum of measure 1 of agents in each of the two groups (patient and impatient). The economic size of

each group is measured by its wage share, which is assumed to be constant. Within each group, a representative household

maximizes: 

E 0 

∞ ∑ 

t=0 

βt z t 

(
�c log ( c t − ε c c t−1 ) + j t �h log ( h t − ε h h t−1 ) − 1 

1 + η
n 

1+ η
t 

)
; (7) 

E 0 

∞ ∑ 

t=0 

(
β ′ )t 

z t 

(
�′ 

c log 
(
c ′ t − ε c c 

′ 
t−1 

)
+ j t �

′ 
h log 

(
h 

′ 
t − ε h h 

′ 
t−1 

)
− 1 

1 + η
n 

′ 1+ η
t 

)
. (8) 

Variables accompanied by the prime symbol refer to impatient households. The terms c t , h t , n t are consumption, housing,

and hours. The discount factors are β and β ′ , with β ′ < β . The term j t captures shocks to housing preferences. An increase

in j t shifts preferences away from consumption and leisure and towards housing, thus resulting in an increase in housing

demand and, ultimately, housing prices. The term z t captures a shock to intertemporal preferences. A rise in z t increases

households’ willingness to spend today, acting as a consumption demand shock. The shock processes follow: 

log j t = 

(
1 − ρJ 

)
log j + ρJ log j t−1 + u j,t , (9) 

log z t = ρZ log z t−1 + u z,t . (10) 

where u j , t and u z , t are n.i.i.d. processes with variance σ 2 
J 

and σ 2 
Z 

. Above, ε c and ε h measure habits in consumption and

housing services respectively. The terms �c , �′ 
c , �h , �

′ 
h 

are scaling factors that ensure that the marginal utilities of con-

sumption and housing are independent of habits in the non-stochastic steady state. 5 

Patient households maximize utility subject to a budget constraint that in real terms reads: 

c t + q t h t + b t + i t = 

w t n t 

x w,t 
+ q t h t−1 + 

R t−1 b t−1 

πt 
+ r k,t k t−1 + di v t . (11)

Investment and capital are linked by: 

k t = a t 

(
i t − φ

( i t − i t−1 ) 
2 

i 

)
+ ( 1 − δk ) k t−1 , (12) 

where i is steady–state investment, and the investment-specific technology a t follows: 

log a t = ρK log a t−1 + u k,t , 

where u k , t is a n.i.i.d. process with variance σ 2 
K 

. Patient agents choose consumption c t , investment i t , capital k t (which

depreciates at the rate δk ), housing h t (priced, in units of consumption, at q t ), hours n t and loans to impatient households

b t to maximize utility subject to (11) and to (12). The term a t is an investment shock affecting the technology transforming

investment goods into capital goods. This type of shock has been identified as an important source of aggregate fluctuations

(e.g., by Justiniano et al., 2011 ). Loans are set in nominal terms and yield a riskless nominal return of R t . The real wage is

w t and the real rental rate of capital is R k , t . The term x w,t denotes the markup (due to monopolistic competition in the

labor market) between the wage paid by the wholesale firm and the wage paid to the households, which accrues to the

labor unions. Finally, πt ≡ P t /P t−1 is the gross inflation rate, di v t are lump-sum profits from final good firms and from labor

unions. 6 The formulation in (12) allows for convex investment adjustment costs, parameterized by φ. 

Impatient households do not accumulate capital and do not own final good firms. Their budget constraint is given by: 

c ′ t + q t h 

′ 
t + 

R t−1 b t−1 

πt 
= 

w 

′ 
t n 

′ 
t 

x ′ w,t 

+ q t h 

′ 
t−1 + b t + di v ′ t . (13)

Impatient households face a borrowing constraint that limits the amount they can borrow, b t , to a fraction m of the house

value. The constraint of the basic model of Section 2 is extended with an eye to empirical realism. Specifically, we allow for

– but do not impose – the possibility that borrowing constraints adjust to reflect the market value of the housing stock only

sluggishly. Accordingly, the constraint takes the form: 

b t ≤ γ
b t−1 

π
+ ( 1 − γ ) m q t h 

′ 
t , (14) 
t 

5 Specifically, �c = ( 1 − ε c ) / ( 1 − βε c ) , �′ 
c = ( 1 − ε c ) / 

(
1 − β ′ ε c 

)
, �h = ( 1 − ε h ) / ( 1 − βε h ) and �′ 

h 
= ( 1 − ε h ) / 

(
1 − β ′ ε h 

)
. 

6 The economy is cashless as in Woodford (2003) . 
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where γ > 0 measures the degree of inertia in the borrowing limit, and m is the steady-state loan-to-value ratio. 7 This

specification captures that borrowing constraints are fully reset only for those agents who refinance their mortgage and is

consistent with the related empirical observation that measures of aggregate debt tend to lag house price movements. 

3.2. Wholesale firms 

To allow for nominal price rigidities, we differentiate between competitive flexible price/wholesale firms that produce

wholesale goods, and final good firms that operate in the final good sector under monopolistic competition subject to im-

plicit costs to adjusting nominal prices. Wholesale firms hire capital and labor supplied by the two types of households to

produce wholesale goods y t . They solve: 

max 
y t 

x p,t 
− w t n t − w 

′ 
t n 

′ 
t − r k,t k t−1 . (15)

Above, x p,t = P t /P w 

t is the price markup of final over wholesale goods, where P w 

t is the nominal price of wholesale goods.

The production technology is: 

y t = n 

( 1 −σ ) ( 1 −α) 
t n 

′ σ ( 1 −α) 
t k αt−1 . (16)

In Eq. (16) , the non-housing, wholesale sector produces output with labor and capital. The parameter σ measures the

labor income share that accrues in the economy to impatient households. When σ approaches zero, so does the economic

weight of impatient households, and the model collapses to a standard monetary model without collateral effects. 

3.3. Final goods firms, nominal rigidities and monetary policy 

There are Calvo-style price rigidities and wage rigidities in the final good sector. As in Bernanke et al. (1999) , final good

firms (owned by patient households) buy wholesale goods y t from wholesale firms in a competitive market, differentiate the

goods at no cost, and sell them at a markup x p , t over the marginal cost. The CES aggregates of these goods are converted

back into homogeneous consumption and investment goods by households. Each period, a fraction 1 − θπ of final good

firms set prices optimally, while a fraction θπ cannot do so, and index prices to the steady state inflation π . Combining the

optimal pricing decision of the final good firms with the equation for the evolution of the aggregate price level results in a

forward–looking Phillips curve that, after linearization, can be written as: 

log ( πt / π) = βE t log ( πt+1 / π) − ε π log ( x p,t / x p ) + u p,t , (17)

where ε π = ( 1 − θπ ) ( 1 − βθπ ) /θπ measur es the sensitivity of inflation t o chang es in the markup, x p , t , r elativ e t o its steady -

state value, x p , whereas the term u p , t denotes an i.i.d. price markup shock, u p,t ∼ N 

(
0 , σ 2 

P 

)
. 

Wage setting is modeled in an analogous way. Households supply homogeneous labor services to unions. The unions

differentiate labor services as in Smets and Wouters (2007) , set wages subject to a Calvo scheme and offer labor services to

labor packers who reassemble these services into the homogeneous labor composites n c and n ′ c . Wholesale firms hire labor

from these packers. The pricing rules set by the union imply, after linearization, the following wage Phillips curves: 8 

log ( ω t / π) = βE t log ( ω t+1 π) − ε w 

log ( x w,t / x w 

) + u w,t , (18)

log 
(
ω 

′ 
t / π

)
= β ′ E t log 

(
ω 

′ 
t+1 / π

)
− ε ′ w 

log 
(
x ′ w,t / x 

′ 
w 

)
+ u w,t , (19)

where ω t = 

w t πt 
w t−1 

and ω 

′ 
t = 

w 

′ 
t πt 

w t−1 
denote wage inflation for each household type, and u w,t ∼ N 

(
0 , σ 2 

W 

)
denotes an i.i.d. wage

markup shock. 9 

Monetary policy follows a modified Taylor rule that allows for interest rate smoothing and responds to year-on-year

inflation and GDP 10 in deviation from their steady-state values, subject to the zero lower bound: 

R t = max 

[ 

1 , R 

r R 
t−1 

(
πA 

t 

πA 

)( 1 −r R ) r π (
y t 

y 

)( 1 −r R ) r Y 

R 

1 −r R 
e t 

] 

. (20)
7 An interpretation of this borrowing constraint is that, with multi-period debt contracts, the borrowing constraint on housing is reset only for households 

that acquire new housing goods or choose to refinance. Of course, in the face of home equity line of credits, adjustments of the borrowing constraint may 

also reflect lenders’ perceived changes in the collateral value. Justiniano et al. (2015) , who study the determinants of household leveraging and deleveraging 

in a calibrated dynamic general equilibrium model, adopt an analogous specification. 
8 In a manner analogous to the price setting problem, markup shocks arise from random shocks to the elasticity of substitution among the varieties that 

enter the CES aggregate of the different labor types. 
9 There are two unions, one for each household type. While the unions choose slightly different wage rates, reflecting the different desired consumption 

profiles of the two household types, the Calvo probability of changing wages is assumed to be the same. 
10 Wholesale goods y t are different from the CES aggregates of these goods that comprise total GDP. The two are approximately equal within a local 

region of the steady state. See e.g. Iacoviello (2005) . 
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Fig. 2. House prices and consumption in U.S. national data. 

Note : Data sources are as follows: House Prices: CoreLogic National House Price Index, seasonally adjusted (Haver mnemonics: USLPHPIS@USECON), divided 

by the GDP deflator (DGDP@USECON). Consumption: Real Personal Consumption Expenditures, Department of Commerce–Bureau of Economic Analysis 

(CH@USECON). In the top panel, the shaded areas indicate NBER recessions. In the bottom panel, consumption growth and house price growth are expressed 

in deviation from their sample mean. The data sample runs from 1976Q1 through 2011Q4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The term R is the steady-state nominal real interest rate in gross terms, and log e t = ρR log e t−1 + u r,t (with u r,t ∼ N 

(
0 , σ 2 

R 

)
)

denotes an autoregressive monetary policy shock. 11 As in Christiano et al. (2011) and Basu and Bundick (2017) , the presence

of the ZLB creates an additional, important nonlinearity. Shocks that move output and prices in the same direction can be

amplified by the inability of central bank to adjust short-term interest rates. 

4. Estimation of the DSGE model 

Fig. 2 offers a first look at the data that motivates our analysis and elucidates the basic asymmetry captured by our

model. The top panel superimposes the time series of U.S. house prices and aggregate consumption expenditures over the

1976–2011 period. The bottom panel is a scatterplot of changes in consumption and changes in house prices, together with

the predicted values of a regression of consumption growth on a third-order polynomial in house price growth. The scatter-

plot highlights that most of the positive correlation is driven by periods with low house prices, during both the 1990–1991

and the 20 07–20 09 recessions. It is important to note that, while excluding periods with declines in house prices would

result in almost no correlation between consumption and house prices, the nonlinearity is still evident with the exclusion

of the post–2005 period, coinciding with the Great Recession and the housing bust. (In the appendix, Fig. A.1 confirms this

claim.) 

We use Bayesian estimation methods to size the structural parameters of the model including the share of impatient

households. A subset of the model parameters are calibrated based on information complementary to the estimation sample.

4.1. Calibration and priors 

The calibrated parameters are reported in Table 1 . β is set equal to 0.995, implying a steady-state 2% annual real interest

rate. The capital share α = 0 . 3 and the depreciation rate δk = 0 . 025 imply a steady-state ratio of capital to annual output

equal to 2.1, and an investment to output ratio of 0.21. The weight on housing in the utility function j is set at 0.04, implying
11 Year-on-year inflation (expressed in quarterly units, like the interest rate) is defined as πA 
t ≡ ( P t /P t−4 ) 

0 . 25 . 
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Table 1 

Calibrated and estimated parameter values. 

Calibrated parameters Value 

m Maximum LTV 0.9 

η Labor disutility 1 

β Discount factor, patient agents 0.995 

π Steady-state gross inflation rate 1.005 

α Capital share in production 0.3 

δk Capital depreciation rate 0.025 

j Housing weight in utility 0.04 

x p Steady-state price markup 1.2 

x w Steady-state wage markup 1.2 

Estimated parameters Prior [mean, std] Posterior 

Mode 5% Median 95% 

β ′ Discount factor, impatient beta [0.984, 0.006] a 0.9922 0.9780 0.9884 0.9929 

εc Habit in consumption beta [0.7, 0.1] 0.6842 0.6351 0.7214 0.8074 

εh Habit in housing beta [0.7, 0.1] 0.8799 0.6633 0.8087 0.9498 

φ Investment adjustment cost gamma [5, 2] 4.1209 3.0756 5.0509 9.6887 

σ Wage share, impatient beta [0.333, 0.20] 0.5013 0.2915 0.4421 0.5838 

r π Inflation resp. Taylor rule normal, 1.5, 0.25] 1.5379 1.5379 1.8129 2.1102 

r R Inertia Taylor rule beta [0.75, 0.1] 0.5509 0.4779 0.5681 0.6606 

r Y Output response Taylor rule beta [0.125, 0.025] 0.0944 0.0577 0.0915 0.1231 

θπ Calvo parameter, prices beta [0.5, 0.075] 0.8913 0.8913 0.9149 0.9343 

θw Calvo parameter, wages beta [0.5, 0.075] 0.9163 0.8941 0.9159 0.9364 

γ Inertia borrowing constraint beta [0.75, 0.1] 0.6945 0.4466 0.6443 0.8196 

ρ J AR(1) housing shock beta [0.75, 0.1] 0.9835 0.9595 0.9797 0.9906 

ρK AR(1) investment shock beta [0.75, 0.1] 0.7859 0.7249 0.7831 0.8369 

ρR AR(1) monetary shock beta [0.5, 0.1] 0.6232 0.4931 0.6142 0.7123 

ρZ AR(1) intertemporal shock beta [0.75, 0.1] 0.7556 0.6136 0.7250 0.8146 

σ J Std. housing demand shock invgamma [0.01, 1] 0.0513 0.0513 0.0863 0.1490 

σ K Std. investment shock invgamma [0.01, 1] 0.0360 0.0286 0.0423 0.0718 

σ P Std. price markup shock invgamma [0.01, 1] 0.0030 0.0027 0.0031 0.0036 

σ R Std. interest rate shock invgamma [0.01, 1] 0.0012 0.0012 0.0013 0.0015 

σ W Std. wage markup shock invgamma [0.01, 1] 0.0100 0.0089 0.0101 0.0116 

σ Z Std. intertemporal shock invgamma [0.01, 1] 0.0163 0.0144 0.0186 0.0263 

Note : The table reports calibrated parameters, priors and posterior estimates of the parameters for the full 

model. The posterior statistics are based on 50,0 0 0 draws from the posterior distribution. 
a The prior distribution for β ′ is truncated so that its lower and upper bound are 0.9 and 0.994 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a steady-state ratio of housing wealth to annual output of 1.5. The maximum loan-to-value ratio m is set at 0.9. The labor

disutility parameter η is set at 1, implying a unitary Frisch labor supply elasticity. The steady-state gross price and wage

markups x p and x w 

are both set at 1.2. Finally, π = 1 . 005 , implying a 2% annual rate of inflation in steady state. 

All other parameters are estimated using Bayesian methods. The prior distributions are reported in Table 1 . Our choices

hew closely to those of Smets and Wouters (2007) , apart, of course, from parameters that were not present in their model.

In particular, we assume a rather diffuse prior for the wage share of impatient households σ (centered at 0.5) and for the

inertial coefficient in the borrowing constraint γ (also centered at 0.5). A key parameter in determining the asymmetries

is the discount factor of the impatient agents, β ′ . Values of this parameter that fall below a certain threshold imply that

impatient agents never escape the borrowing constraint. In that case, the model has no asymmetries (except for the presence

of the ZLB), regardless of shocks size, and produces a large correlation between housing price growth and consumption

growth, since the borrowing constraint always holds with equality. Conversely, when β ′ takes on higher values, closer to

the discount factor of patient agents, modest increases in house prices suffice to make the borrowing constraint slack (even

though the constraint is expected to bind in the long run). The prior mean for β ′ is set at 0.99 with a standard deviation of

0.0015. 

4.2. Data 

The estimation is based on observations for six series: total real household consumption, price (GDP deflator) inflation,

wage inflation, real investment, real housing prices and the Federal Funds Rate. The observations span the period from

1985Q1 to 2011Q4 (Appendix C describes the data in detail). The model features six shocks: investment-specific shocks, wage

markup, price markup, monetary policy, intertemporal preferences and housing preferences. We do not include financial

variables – such as household borrowing – among the observed variables for estimation, since the available measures of

household debt are gross measures, also including debt held by agents who own a large amount of liquid assets, which are

harder to map into our model with only debt contracted by (potentially) credit–constrained agents. However, we later show

that the model’s predictions for the behavior of household debt, conditional on the path of the chosen observed variables,
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closely match some of the available empirical proxies. Accordingly, the exclusion of debt measures from the set of observed

variables has little bearing on the results. 

Prior to estimation, a one-sided HP filter (with a smoothing parameter of 10 0,0 0 0) is used to remove the low-frequency

components of consumption, investment and housing prices. The one-sided HP filter has two advantages. First, it yields

plausible estimates of the trend and the cycle for these variables. For instance, according to the filter, consumption and

house prices were respectively 8 and 30% below trend at the trough of the Great Recession. Second, as argued by Stock and

Watson (1999) , the one-sided filter is not affected by the correlation of current observations with subsequent observations.

The analysis presented in Appendix E documents that the results are robust to the inclusion and joint estimation of linear

deterministic trends. 

4.3. Model solution and estimation 

The model is solved nonlinearly to account for the occasionally binding constraint on borrowing and the non-negativity

constraint on the interest rate. Depending on whether the zero lower bound binds or not, and depending on whether the

collateral constraint on housing binds or not, the economy can be in one of four regimes. The solution method links the

first-order approximation of the model around the same point under each regime. Importantly, the solution is not just linear,

with different coefficients depending on each of the four regimes, but rather, it can be highly nonlinear. The dynamics in

each regime may crucially depend on how long agents expect that regime to last. In turn, that duration expectation depends

on the state vector. Appendix D describes the solution method and gauges its accuracy in detail. 12 

The solution of the model can be expressed as: 

X t = P (X t−1 , εt ) X t−1 + D (X t−1 , εt ) + Q (X t−1 , εt ) εt . (21)

The vector X t collects all the variables in the model, except the innovations to the shock processes, which are separated in

the vector εt . The matrix of reduced-form coefficients P is state-dependent, as are the vector D and the matrix Q . These

matrices and vector are functions of the lagged state vector and of the current innovations. However, while the current

innovations can trigger a change in the reduced-form coefficients, X t is still locally linear in εt . 

The solution in Eq. (21) can be represented in terms of observed series by premultiplying the state vector X t by the

matrix H t , which selects the observed variables. Accordingly, the vector of observed series Y t is simply Y t = H t X t . 
13 Because

the reduced-form coefficients in Eq. (21) endogenously depend on εt , one cannot use the Kalman filter to retrieve the

estimates of the innovations in εt . Instead, following Fair and Taylor (1983) , we recursively solve for εt , given X t−1 and the

current realization of Y t , the following system of non-linear equations: 14 

Y t = H t P (X t−1 , εt ) X t−1 + H t D (X t−1 , εt ) + H t Q (X t−1 , εt ) εt . (22)

The vector X t contains unobserved components, so the filtering scheme requires an initialization. We assume that the initial

X 0 coincides with the model’s steady state and train the filter using the first 20 observations. Given that εt is assumed to

be drawn from a multivariate Normal distribution with covariance matrix �, a change in variables argument implies that

the logarithmic transformation of the likelihood f for the observed data Y T can be written as: 

log( f (Y T )) = −T 

2 

log ( det (�)) − 1 

2 

T ∑ 

t=1 

ε′ 
t 

(
�−1 

)
εt + 

T ∑ 

t=1 

log 

(
| det 

∂εt 

∂Y t 
| 
)

. (23) 

The inverse transformation from the shocks to the observations needed to form the Jacobian matrix ∂εt 
∂Y t 

is only given im-

plicitly by (H t Q (X t−1 , εt )) εt − ( Y t − H t P (X t−1 , εt ) X t−1 − H t D t ) = 0 . To proceed by implicit differentiation, we verify that the

determinant of H t Q (X t−1 , εt ) is nonzero. Accordingly, the implicit transformation is locally invertible and the Jacobian of the

inverse transformation is: 

∂εt 

∂Y t 
= (H t Q (X t−1 , εt )) 

−1 . (24) 

Derivation of this Jacobian relies on local linearity in εt of the model’s solution (i.e., 
∂P ( X t−1 ,εt ) 

∂εt 
= 

∂D (X t−1 ,εt ) 

∂εt 
= 

∂Q (X t−1 ,εt ) 

∂εt 
= 0 ,

where these derivatives are defined), a property that is further discussed in Appendix D. Using this result and recognizing

that | det ((H t Q (X t−1 , εt )) 
−1 ) | = 1 / | det (H t Q (X t−1 , εt )) | , the logarithmic transformation of the likelihood in Eq. (23) can be

expressed as: 

log( f (Y T )) = −T 

2 

log ( det (�)) − 1 

2 

T ∑ 

t=1 

ε′ 
t 

(
�−1 

)
εt −

T ∑ 

t=1 

log (| det H t Q (X t−1 , εt ) | ) . (25)
12 Guerrieri and Iacoviello (2015) compare the performance of this solution method with other nonlinear methods for an array of models. 
13 The matrix H t that selects the observed variables is time-varying because we drop the interest rate from the observed vector at the zero lower bound. 

In that case, we also assume that monetary policy shock is zero, unless the notional rate implied by the model is positive when the observed rate is still 

zero. In that case, we select the notional rate as observed and reinstate the monetary policy shock. 
14 There is in principle the possibility of multiple solutions for εt to the extent that Eq. (22) is highly nonlinear in εt . Our specific application has not 

shown evidence of this multiplicity. In theory, however, our approach to constructing the likelihood does not depend crucially on a one to one mapping 

between Y t and εt . Standard results could be invoked to allow for a general correspondence between Y t and εt when constructing the likelihood function. 
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In our case, the Jacobian of the inverse transformation for the change in variables is known from the model’s solution and

does not require any additional calculations. This property of the solution allows for an evaluation of the likelihood in a

matter of seconds, affording us crucial time savings relative to the general approach in Fair and Taylor (1983) , and making

estimation possible. 

5. Model estimation results 

This section discusses key parameter estimates and then highlights the non-linear nature of the reaction to positive

and negative shocks. Counterfactual experiments show that collateral constraints on housing wealth played a key role in

exacerbating the economic collapse of the Great Recession. A smaller but important contribution to the economic collapse

stemmed from the zero lower bound on nominal interest rates. Additionally, the estimated model that excludes collateral

constraints on housing wealth is forced to rely on consumption preference shocks to explain the severe drop in consumption

of the Great Recession. A posterior odds ratio greatly favors the model with collateral constraints. 

5.1. Estimated parameters 

The evaluation of the likelihood is combined with prior information about the parameters in order to construct and max-

imize the posterior as a function of the model’s parameters, given the data. The posterior density of the model’s parameters

is constructed using a standard random walk Metropolis–Hastings algorithm (with a chain of 50,0 0 0 draws). 

The posterior modes of the estimated parameters and other statistics are reported in Table 1 . Crucially, there is a sizeable

fraction of impatient agents, governed by σ . The choice of prior, a diffuse beta distribution, simply guarantees that this

fraction remains bounded between 0 and 1. The posterior mode is estimated to be 0.50 and the 90% confidence interval

ranges from 0.29 to 0.58. Accordingly, σ = 0 , which would imply the exclusion of collateral constraints from the model, is

highly unlikely. Moving to the parameters that govern nominal rigidities and monetary policy, the posterior modes for the

Calvo parameters governing the frequency of price and wage adjustment are both equal to 0.92 . This high degree of price

and wage rigidity likely compensates the absence of real rigidities, such as variable capacity utilization, partial indexation of

prices and wages, or firm-specific capital. The estimated interest rate reaction function gives less weight to output and more

weight to inflation than our prior, which was centered around Taylor’s canonical values of 0.5 for the output parameter (with

output measured at an annual rate) and 1.5 for the inflation parameter. Finally, there is evidence of inertia in the borrowing

constraint, as shown by the estimated value of γ which equals 0.70. A positive value of γ slows down the extent to which

deleveraging takes place in periods of falling housing prices, thus creating inertia in consumption. 

Given the parameter estimates, key empirical properties of the model line up well with the data in several respects.

First, in response to small shocks that do not make the borrowing constraint slack or the ZLB bind, the model’s impulse

responses, for instance those to monetary shocks, are in line with the findings of existing studies, such as Christiano et al.

(2010) . 15 Second, key moments in the data line up well with those of the estimated model. 16 For instance, the standard

deviation of consumption is 2.2% in the model, compared to 2 . 9% in the data. The model also captures the high volatility of

house prices – their standard deviation is 11 . 3% in the model, 12 . 5% in the data. 

Finally, the variance decomposition shows that about three quarters of the house price volatility is driven by the housing

preference shock (as in recent work by Liu et al., 2013 ). This point is elaborated on in two experiments described below.

The first experiment focuses on a comparison of positive and negative housing shocks. The second experiment presents a

decomposition that highlights the role of housing shocks in the collapse of the Great Recession. 

5.2. Responses to positive and negative shocks to housing prices 

Fig. 3 illustrates the fundamental asymmetry in the estimated model and confirms key insights from the basic model. The

figure considers the effects of shocks to housing preferences, governed by the process j t in Eq. (9) . Two series of innovations

to j t occur between periods 1 and 8. One of the two series of innovations lowers house prices by 20% . The other raises

house prices by 20%. From period 9 onwards, there are no more innovations and the shock j t follows the autoregressive

component of the stochastic process. All parameters are set to their estimated posterior mode. 

The dashed lines denote the effects of the decline in house prices. This decline reduces the collateral capacity of con-

strained households, who borrow less and are forced to curtail their non-housing consumption even further. At its trough,

consumption is nearly 3% below its steady state. The nominal and real rigidities imply that the decline in aggregate con-

sumption translates into lower demand for labor from firms. As a consequence, hours worked fall about 2% below the

baseline. 

The solid lines plot the responses to a shock of the same magnitude and profile but with opposite sign. In this case,

house prices increase 20% . As in the partial equilibrium model described in Section 2 , a protracted increase in house prices

can make the borrowing constraint slack. The Lagrange multiplier for the borrowing constraint bottoms out at zero and
15 Fig. A.3 in the appendix reports the impulse response to all shocks. 
16 Our nonlinear model does not admit a closed form for the moments of the variables. The model statistics are thus computed on simulated series (using 

a long simulation with T = 50 0 0 ). 
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Fig. 3. Impulse responses to positive and negative housing demand shocks in the DSGE model. 

Note : The units for the horizontal axes are quarters. The simulation shows the dynamic responses to sequence of housing demand shocks of equal size but 

opposite sign that move house prices up (solid lines) and down (dashed lines) by 20% relative to the steady state. 

 

 

 

 

 

 

 

 

 

 

 

 

remains at zero for some time, before rising as house prices revert to baseline. When the constraint is slack, the borrowing

constraint channel remains operative only in expectation. Thus, impatient households discount that channel more heavily

the longer the constraint is expected to remain slack. As a consequence, the response of consumption to the house price

increases considered in the figure is not as dramatic as the reaction to the equally-sized house price declines. At its peak,

consumption rises about 1% above its baseline, a magnitude one third as big as for the house price decline. In turn, the

increase in hours is muted, peaking at about 0.5% above the baseline. 

In experiments not reported here, we have found modest asymmetries for other shocks that affect house prices and

consumption. These shocks are likely to generate significant asymmetries only insofar as they affect house prices or collateral

capacity. However, the asymmetry uncovered here is independent of the particular stochastic structure of the model, and

needs not rely on housing demand shocks only. Potentially, in any housing model with occasionally binding constraints, one

can find substantial asymmetries as long as the model can match the observed swings in house prices. 

5.3. Shock decomposition 

To highlight the role of house price declines in accounting for the consumption collapse of the Great Recession, Fig. 4

decomposes house prices and consumption in terms of the underlying shocks. By construction, the marginal contributions

of each shock sum to the observed series. 17 In the upper panel of Fig. 4 , the decomposition for house prices shows that
17 For nonlinear models the marginal and average contributions of each shock need not coincide. The marginal contributions vary with the order in which 

the shocks are turned on (marginalized). In Fig. 4 , the order is (1) housing preference shock, (2) investment technology shock, (3) price markup shock, (4) 

monetary policy shock, (5) wage markup shock, and (6) intertemporal preference shock. Alternative orderings did not change the results. 
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housing demand shocks explain the lion’s share of the movements in house prices. This finding is consistent with results in

Liu et al. (2013) , as well as with the approach taken by Berger et al. (2015) to explain the recent housing boom–bust in a

calibrated OLG housing model. This finding is also is consistent with a view that the housing boom that preceded the Great

Recession was rooted in forces largely uncorrelated with economic conditions. The figure also highlights that, although they

play a smaller role, other shocks also influence house prices. For instance, investment technology shocks played a sizable

role in the housing price boom. 

A striking feature of the shock decomposition for consumption is that about 70% of the consumption decline through

2009 can be traced to housing demand shocks that impact consumption through the collateral channel. By contrast, these

shocks would have no implications for consumption in the absence of collateral constraints. Furthermore, the same shocks

only accounted for a modest part of the rise in consumption prior to the Great Recession, when collateral constraint became

slack. 

Fig. 4 also highlights that our nonlinear model can rationalize how the house price collapse starting at the end of 2005

did not, at first, have an outsize effect on consumption. Since the preceding house price boom had relaxed borrowers’ col-

lateral constraints, the initial reductions in house prices could be counteracted by increasing borrowing rather than curbing

consumption. Accordingly, in the model as in the data, debt lags house prices, and leverage keeps rising well after house

prices start declining, as further discussed in Section 5.6 . Only as house prices kept falling, did borrowers’ collateral con-

straints tighten and consumption took a large hit. 

5.4. The asymmetric contribution of housing to business cycles 

Two nonlinear features of the model help account for the large consumption collapse of the Great Recession: occasionally

binding collateral constraints, and, to a smaller extent, the zero lower bound on nominal interest rates. The role of these fea-

tures is showcased with three experiments. The first experiment feeds the estimated sequence of shocks for the benchmark

model with collateral constraints into a model that does not encompass those constraints, but that is otherwise identical to

the benchmark model and that is not re-estimated. The second experiment considers the opposite case, in which collateral

constraints are always binding. The third experiments focuses on the zero lower bound on nominal interest rates. 
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By construction, the estimated sequence of shocks, when fed back into the benchmark model, allows to exactly match

for the observed data. Moreover, one can recover the path of all unobserved variables, including the Lagrange multiplier on

the borrowing constraint. Fig. 5 compares the observed data against the outcomes of three counterfactual experiments. 

The first experiment –“No Collateral Constraint” –, drops impatient households from the model, so that collateral con- 

straints are ruled out. Housing prices are still matched. However, consumption diverges markedly from the observed data.

When the Lagrange multiplier is estimated to be binding in the 20 07–20 09 recession, a large gap opens up between the

observed and counterfactual consumption levels. Between 2008 and 2012, the model without collateral constraints misses

the collateral channel linked to housing wealth, and predicts a very small decline in consumption. Remarkably, without

collateral constraints the recession would have been curbed to such an extent that the Federal Funds rate would not have

reached zero. 

The second experiment –labeled “Always Binding Constraint” –, assumes that borrowers’ collateral constraints are always

binding. A large gap between the observed and counterfactual consumption levels peaks in the year 20 0 0, coinciding with

an inflection in the rate of growth in house prices. According to the baseline model, rapidly growing house prices relaxed the

collateral constraints of borrowers, weakening the link between house price growth, credit, and consumption. By contrast,

always binding constraints, in the counterfactual experiment, imply a more pronounced expansion of credit and consump-

tion relative to the observed movements. Remarkably, collateral constraints that always bind also imply an overshooting of

the consumption decline in reaction to the house price collapse of the Great Recession. As house prices started falling in

2005, slack borrowing constraints buffeted the consumption declines, as borrowers could use additional credit as a mar-

gin of adjustment. By contrast, in the counterfactual model with permanently binding constraints borrowers were forced to

curtail consumption even before the house price declines gained momentum, eventually leading to a counterfactually large

decline in consumption, about 2 percentage points larger than observed. 

The third experiment (labeled “No ZLB”) gauges how much of the decline in consumption was due to the zero lower

bound constraint. As shown in the Figure, absent the zero lower bound, nominal interest rates would have fallen to minus
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2% , and the trough of consumption would have been about two percentage points higher (i.e., less severe) than the trough

observed. 

5.5. Statistical comparisons with other models 

The experiments discussed in the previous section do not allow for the re-estimation of the shock processes and of the

parameters for each of the model variants considered. To complete the analysis, we also estimated the model without bor-

rowers and the model with permanently binding constraints keeping the observation set unchanged relative to the one used

for the benchmark model. The posterior modes for all the parameters for these two variants are reported in the appendix.

The log marginal data density for the benchmark model with occasionally binding constraints is 2270.8. The variant without

borrowing and lending has the lowest log marginal data density, 2266.8, and the variant with permanently binding an in-

termediate value of 2268.7. These results imply posterior odds ratios of 55 to 1 and 8 to 1 in favor of the benchmark model

over these two variants, respectively. 

Fig. 5 offers some clues to account for the superior performance of the benchmark model. A model without borrowing

and lending needs to amplify the decline in consumption during the Great Recession with additional shocks relative to the

benchmark model. In our estimation exercise, the variant without borrowing and lending needs to resort to much larger

intertemporal preference shocks to fit the observed data. 18 

The estimation of the model with a permanently binding collateral constraint points to a lower fraction of impatient

households relative to the benchmark model, with σ moving down from 0.50 to 0.44, and also a lower discount factor

for impatient households, declining from 0.992 to 0.986. Both changes tend to buffet the correlation of house prices and

consumption but this change is not sufficient to overcome the symmetry between house price expansions and contractions,

which results in a lower marginal data density for this model relative to the benchmark model. 

In sum, the results show that lower house prices and weaker households balance sheets were the main culprits for the

consumption collapse during the Great Recession. 

5.6. Implications of the model for the behavior of household debt 

Financial variables – such as household borrowing – are not included in the observation set since available measures of

household indebtedness are imperfect proxies for the debt stock in the model. An additional way to validate the model is to

compare the evolution of financial time series that were not used as inputs in the estimation exercise against their closest

model counterparts. Consider, in particular, measures of leverage and net borrowing. Using the model, these two series are

constructed as follows: 

le v t = 100 × b t 

q t h 

′ 
t 

(26)

bor t = 100 × �( P t b t ) 

4 P y 
. (27)

Above, leverage is defined as the ratio of debt to housing wealth, 19 and borrowing is defined as the change ( �) in nominal

debt (scaled by steady-state annual GDP), expressed in percentage terms. Leverage falls slowly when house prices rise,

because the borrowing constraint is inertial and slack, but rises sharply when house prices fall, because the constraint

tightens. Due to the occasionally binding constraint, the model also predicts that borrowing rises less than the sum of

housing prices and housing investment when housing prices rise, and falls more than the sum of housing prices and housing

investment when housing prices fall. 

The top panel of Fig. 6 compares leverage in the model with its data counterpart, constructed as the ratio of household

debt to housing wealth from the Financial Accounts of the United States. 20 In the model as in the data, household leverage

falls throughout the early 1990s and moves little until the end of the housing boom. In the model as in the data, leverage

spikes up at the beginning of the housing crash, and drops thereafter as debt declines more than housing prices. 

Data measures for household debt move both because of net originations and because of charge-offs on the existing stock.

Movements in charge-offs, which were important during the latest recession, complicate the comparison between model

and observed measures of the stock of debt. Accordingly, the bottom panel looks at a flow measure of debt, comparing new

borrowing in the model with its data counterpart. New borrowing in the data is proxied using mortgage equity withdrawal,
18 Referring to Column 2 of Table A.1 in the appendix, the standard deviation of the innovations to the intertemporal preference shock process, σ Z jumps 

from 0.016 for the benchmark model to 0.030 for the model without borrowers. Nonetheless, the standardized shocks during the Great Recession are still 

noticeably smaller for the benchmark model, boosting the likelihood and the marginal data density of the benchmark model. 
19 We correct for the fact that the model only tracks net debt (that is, savers’ gross debt is zero) by excluding the savers’ housing stock from the model’s 

definition of leverage. Including the savers’ housing stock in the denominator makes little difference for the results. 
20 See the note to Fig. 6 for the data references. The observed measure of leverage shows an upward trend in the sample period and this trend comes 

to a halt during the Great Recession. In the figure, this trend was removed using a one sided HP-filter with λ = 10 0 , 0 0 0 , as for our benchmark model. 

Ideally, one would compare the model against micro data, such as those underlying the Survey of Consumer Finances. However, the SCF is triennial, and 

measures of leverage constructed from the SCF, while informative for trends, are of limited use for business cycle analysis. 
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Fig. 6. Leverage and borrowing in the model and in the data. 

Note : The top panel compares smoothed leverage in the estimated model (dashed line) with its data analogue. Leverage in the data is the Households’ 

Total Liabilities (Haver Analytics code: PL15ABN5@FFUNDS) divided by Households’ Real Estate (PA15TOO5@FFUNDS), from the Flows of Funds Tables. The 

bottom panel compares smoothed borrowing in the estimated model (dashed line, divided by steady-state annual GDP) with its data analogue. Borrowing 

in the data is Net Mortgage Originations less estimated debt on residential investment (MEW1@USECON), divided by trend GDP from the Congressional 

Budget Office (GDPPOTQ@USECON). In each panel, the data series are detrended using a one-sided HP filter (smoothing parameter of 10 0,0 0 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constructed as the difference between households’ new mortgage borrowing and the estimated borrowing to finance new

residential construction (divided by trend GDP). 21 Again, bearing in mind that no debt variable was used in the estimation,

the model’s object tracks its data proxy remarkably well. 

5.7. Sensitivity analysis 

We perform a battery of checks in order to gauge the robustness of the results. These checks are fully described in the

appendix and merely listed here. First, our findings are insensitive to the assumption that the initial vector of endogenous

variables, X 0 , is equal to its steady-state value. Second, our filtering algorithm, when applied to data generated from the

posterior mode of the model, can accurately recover the true structural shocks when the structural parameters are known.

Third, when our entire estimation strategy is applied to data generated from the posterior mode of the model, the estimated

parameters are close to their true values. The sensitivity analysis also considers an alternative detrending strategy, different

shock structures and the addition of variable capacity utilization. 

6. Regional evidence on asymmetries 

The model estimated on national-level data motivates additional empirical analysis that uses a panel of data from U.S.

states and Metropolitan Statistical Areas (MSA). The advantage of these data is that variation in house prices and economic

activity is greater at the regional than at the aggregate level, as documented for instance by Del Negro and Otrok (2007) ,

who find large heterogeneity across states in regard to the relative importance of the national factors. Note that, in any

event, the state-level series aggregated back to the national level track their National Income and Product Accounts (NIPA)

counterparts. 22 

To set the stage, Fig. 7 shows house prices at the regional level and several measures of activity, namely employment in

the service sector, auto sales, electricity consumption and mortgage originations. The figure focuses on two points in time,
21 New borrowing is thus the change in the stock of debt excluding charge-offs and netting out new construction, two features excluded from our model. 

Our model does not feature a construction sector, implying that new residential investment is zero at all times. By subtracting borrowing used to finance 

new construction from total mortgage borrowing, model and data are put on equal footing. 
22 For instance, over the sample period, the correlation between NIPA motor vehicle consumption growth (about 1/3 of durable expenditure) and retail 

auto sales growth is 0.89; and the correlation between services consumption growth and electricity usage growth is 0.54. 
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Fig. 7. House prices and economic activity by state. 

Note : Each panel shows house price growth and activity growth across U.S. states in 2005 and 2008. The solid lines show the fitted values of a regression 

of activity growth on house prices growth broken down into positive and negative changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 05 and 20 08 for all the 50 U.S. states and the District of Columbia. For each state, each panel presents two dots: the

green dot (concentrated in the north–east region of the graph) shows the lagged percent change in house prices and the

percent change in the indicator of economic activity in 2005, at the height of the housing boom. The red dot represents

analogous observations for the 2008 period, in the midst of the housing crash. Fitting a piecewise linear regression to these

data yields a correlation between house prices and activity that is smaller when house prices are high. This evidence on

asymmetry is bolstered by the large cross-sectional variation in house prices across states over the period in question. 

6.1. State-level evidence 

We use annual data from the early 1990s to 2011 on house prices and measures of economic activity for the 50 U.S.

states and the District of Columbia. We choose measures of economic activity that best match the model counterparts for

consumption, employment and credit. 23 

The main specification takes the following form: 

� log y i,t = αi + γt + βPOS I i,t � log hp i,t−1 + βNEG ( 1 − I i,t ) � log hp i,t−1 + δX i,t−1 + ε i,t (28)

where y i , t is an index of economic activity and hp i , t is the inflation-adjusted house price index in state i in period t ; αi and

γ t represent state and year fixed effects; and X i , t is a vector of additional controls. Changes in house prices are interacted

with a state-specific indicator variable I i,t that, in line with the model predictions, takes a value equal to one when house

prices are high, and equal to 0 when house prices are low. House prices are classified as high when they are above a

state-specific linear trend separately estimated for the 1976–2011 period, a classification that lines up with the findings

of the estimated model in Fig. 4 . Using this approach, the fraction of states with high house prices is about 20% in the

1990s, rising gradually to peak at 100% in 2005 and 2006, and dropping to 27% at the end of the sample. The results were

similar using two alternative definitions of I i,t . Under the first alternative definition, I i,t equals to one when real house price
23 None of the currently available measures of regional consumption aligns with national consumption data in a fully satisfactory way. See for instance 

the discussion in Awuku-Budu et al. (2013) . Total consumption is proxied with electricity consumption and with automobile sales. 



44 L. Guerrieri, M. Iacoviello / Journal of Monetary Economics 90 (2017) 28–49 

Table 2 

State-level regressions: employment in services and house prices. 

% Change in employment ( �emp t ) 

�hp t−1 0.14 ∗∗∗

(0.01) 

�hp _ high t−1 0.07 ∗∗∗ 0.08 ∗∗∗ 0.03 ∗ 0.02 

(0.01) (0.01) (0.02) (0.01) 

�hp _ low t−1 0.24 ∗∗∗ 0.12 ∗∗∗ 0.08 ∗∗∗ 0.07 ∗∗∗

(0.02) (0.02) (0.02) (0.02) 

�emp t−1 0.26 ∗∗∗ 0.23 ∗∗∗

(0.08) (0.09) 

�income t−1 0.07 ∗∗

(0.03) 

pval difference 0.0 0 0 0.100 0.013 0.017 

Time effects no no yes yes yes 

Observations 1071 1071 1071 1020 1020 

States 51 51 51 51 51 

R -squared 0.12 0.16 0.66 0.72 0.73 

Note : The table reports results for regressions that use annual observations from 1991 

to 2011 for 50 States and the District of Columbia. Robust standard errors are shown in 

parentheses. The symbols ∗∗∗ , ∗∗ , ∗ denote estimates that are statistically different from 

0 at the 1, 5 and 10% confidence level. In the table, pval is the p -value of the test for 

differences in the coefficients for high and low house prices. 

Data Sources and Definitions : �hp is the inflation–adjusted (using the GDP deflator) per- 

cent change in the FHFA All Transactions House Price Index (available both at State- 

and MSA-level). �emp is the percent change in employment in the Non-Tradable Ser- 

vice Sector which includes: Retail Trade, Transportation and Utilities, Information, Fi- 

nancial Activities, Professional and Business Services, Education and Health Services, 

Leisure and Hospitality, and Other Services (source: BLS Current Employment Statis- 

tics: Employment, Hours, and Earnings – State and Metro Area). �income is the percent 

change in the inflation–adjusted state-level disposable personal income (source: Bureau 

of Economic Analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

inflation is positive. Under the second definition, I i,t equals to one when the ratio of house prices to income is high relative

to its trend (in log). The benchmark specification uses one-year lags of house prices and other controls. The results were

also little changed when instrumenting current or lagged house prices with one or more lags. 

Tables 2 to 4 present estimates when the indicators of economic activity y i , t are employment in the service sector, auto

sales and electricity usage respectively. 

Table 2 presents the results when the measure of regional activity is employment in the non-tradeable service sector. U.S.

states trade heavily with each other, so that employment in sectors that mainly cater to the local economy better isolates

the local effects of movements in local house prices. 24 The first two specifications do not control for time effects. They show

that the asymmetry is strong and economically relevant, and that house prices matter, at statistically conventional levels,

both when high and when low. After controlling for time effects in the third specification, the coefficient on high house

prices is little changed, but the coefficient on low house prices is lower. A large portion of the declines in house prices in

our sample took place against the background of the zero lower bound on policy interest rates. As discussed in the model

results, the zero lower bound is a distinct source of asymmetry for the effect of change in house prices. Time fixed effects

allow us to parse out the effects of the national monetary policy reaching the zero lower bound and, in line with our theory,

compress the elasticity of employment to low house prices. In the last two specifications, after controlling for income and

lagged employment, the only significant coefficient is the one on low house prices. In column five, the coefficient on high

house prices is positive, although it is low and not significantly different from zero. The coefficient on low house prices,

instead, is positive and significantly different from zero, thus implying that house prices matter more for economic activity

when they are low. In addition, the test for the difference between the coefficient on low house prices and the coefficient

on high house prices confirms that the difference is significantly larger than zero. 

Table 3 reports results when the measure of activity is retail automobile sales. Auto sales are an excellent indicator

of local demand since autos are almost always sold to state residents and since durable goods are notoriously sensitive to

business cycles. After adding lagged car sales and personal income as controls, the coefficients on low and high house prices

are both positive, but the coefficient on low house prices (estimated at 0.2) is nearly three times as large. 
24 The BLS collects state-level employment data by sectors broken down according to NAICS (National Industry Classification System) starting from 1990. 

According to this classification (available at http://www.bls.gov/ces/cessuper.htm ), the goods-producing sector includes Natural Resources and mining, con- 

struction and manufacturing. The service-producing sector includes wholesale trade, retail trade, transportation, information, finance and insurance, profes- 

sional and business services, education and health services, leisure and hospitality and other services. A residual category includes unclassified sectors and 

public administration. We exclude from the service sector wholesale trade (which on average accounts for about 6% of total service sector employment) 

since wholesale trade does not necessarily cater to the local economy. 

http://www.bls.gov/ces/cessuper.htm
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Table 3 

State-level regressions: auto sales and house prices. 

% Change in auto sales ( �auto t ) 

�hp t−1 0.24 ∗∗∗

(0.03) 

�hp _ high t−1 −0.05 0.16 ∗∗∗ 0.11 ∗∗∗ 0.07 ∗∗

(0.04) (0.04) (0.03) (0.03) 

�hp _ low t−1 0.62 ∗∗∗ 0.33 ∗∗∗ 0.27 ∗∗ 0.20 ∗∗

(0.05) (0.06) (0.11) (0.09) 

�auto t−1 0.23 0.21 

(0.17) (0.17) 

�income t−1 0.34 ∗∗∗

(0.11) 

pval difference 0.0 0 0 0.040 0.137 0.155 

Time effects no no yes yes yes 

Observations 969 969 969 918 918 

States 51 51 51 51 51 

R -squared 0.02 0.06 0.86 0.87 0.88 

Note : The table reports the results of state-level regressions using annual 

observations from 1992 to 2011 for 50 States and the District of Columbia. 

Robust standard errors are shown in parentheses. The symbols ∗∗∗ , ∗∗ , ∗ de- 

note estimates that are statistically different from zero at the 1, 5 and 10% 

confidence levels. In the table, pval is the p -value of the test for differ- 

ences in the coefficients for high and low house prices. 

Data Sources and Definitions : �auto is the percent change in inflation–

adjusted auto sales, “Retail Sales: Motor vehicle and parts dealers” from 

Moody’s Analytics Database. Auto sales data are constructed with under- 

lying data from the US Census Bureau and employment statistics from the 

BLS. The two Census Bureau surveys are the quinquennial Census of Retail 

Trade, a subset of the Economic Census, and the monthly Advance Retail 

Trade and Food Services Survey. See Table 2 for other variable definitions. 

Table 4 

State-level regressions: electricity consumption and house prices. 

% Change in electricity consumption ( �elec t ) 

�hp t−1 0.11 ∗∗∗

(0.02) 

�hp _ high t−1 0.03 0.09 ∗∗∗ 0.14 ∗∗∗ 0.12 ∗∗∗

(0.02) (0.02) (0.03) (0.03) 

�hp _ low t−1 0.24 ∗∗∗ 0.16 ∗∗∗ 0.22 ∗∗∗ 0.19 ∗∗∗

(0.03) (0.03) (0.04) (0.04) 

�elec t−1 −0.41 ∗∗∗ −0.41 ∗∗∗

(0.02) (0.02) 

�income t−1 0.15 ∗∗∗

(0.05) 

pval difference 0.0 0 0 0.105 0.058 0.090 

Time effects no no yes yes yes 

Weather Controls ∗ yes yes yes yes yes 

Observations 1071 1071 1071 1020 1020 

States 51 51 51 51 51 

R -squared 0.04 0.04 0.08 0.12 0.12 

Note : The table reports state-level regressions using annual observations from 

1990 to 2011 for 50 States and the District of Columbia. Robust standard errors 

are shown in parentheses. The symbols ∗∗∗ , ∗∗ , ∗ denote estimates statistically dif- 

ferent from zero at the 1, 5 and 10% confidence level. In the table, pval is the 

p -value of the test for difference in the coefficients for low-house prices and 

high-house prices. 

Data Sources and Definitions : �elec is the percent change in Residential Electric- 

ity Consumption (source: the U.S. Energy Information Administration’s Electric 

Power Monthly publication. Electricity Power Annual: Retail Sales – Total Elec- 

tric Industry – Residential Sales, NSA, Megawatt-hours). See Table 2 for other 

variable definitions. All regressions in the Table control separately for number of 

heating degree days and number of cooling degree days in each state (source: 

U.S. National Oceanic and Atmospheric Administration’s National Climatic Data 

Center). 
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Table 5 

MSA level: employment in services and house prices. 

% Change in employment ( �emp t ) 

�hp t−1 0.134 ∗∗∗

(0.006) 

�hp _ high t−1 0.104 ∗∗∗ 0.058 ∗∗∗ 0.049 ∗∗∗ 0.048 ∗∗∗

(0.008) (0.007) (0.008) (0.008) 

�hp _ low t−1 0.183 ∗∗∗ 0.099 ∗∗∗ 0.095 ∗∗∗ 0.094 ∗∗∗

(0.009) (0.008) (0.010) (0.010) 

�emp t−1 0.033 0.031 

(0.041) (0.041) 

�income t−1 0.021 ∗

(0.011) 

pval difference 0.0 0 0 0 0.0 0 03 0.0 0 01 0.0 0 0 0 

Time effects no no yes yes yes 

Observations 5390 5390 5390 5147 5147 

MSA 262 262 262 262 262 

R-squared 0.09 0.10 0.37 0.39 0.39 

Note : The table reports MSA-level regressions using annual observations from 

1992 to 2011 for 262 MSAs (102 MSAs were dropped since they had incomplete 

or missing data on employment by sector). Robust standard errors are shown 

in parentheses. The symbols ∗∗∗ , ∗∗ , ∗ denote estimates statistically different from 

zero at the 1, 5 and 10% confidence level. In the table, pval is the p -value of the 

test for difference in the coefficients for low-house prices and high-house prices. 

Data Sources and Definitions : �income is the percent change in MSA-level 

inflation-adjusted personal income (source: BEA, Local and Metro Area Personal 

Income Release). For employment ( �emp ) and house prices ( �hp ), see Table 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 reports the results using residential electricity usage as a proxy for consumption. Even though electricity usage

only accounts for 3% of total consumption, electricity usage is a useful proxy for nondurable consumption. Most activities

involve the use of electricity, and electricity cannot be easily stored. Accordingly, the flow usage of electricity may even

provide a better measure of the utility flow derived from a good than the actual purchase of the good. Even in cases when

annual changes in weather conditions may affect year-on-year consumption growth, their effect can be filtered out using

state-level observations on heating and cooling degree days, which are conventional measures of weather-driven electricity

demand. These weather measures are used as controls in all specifications reported. As the table shows, in all regressions

low house prices affect consum ption growth more than high house prices. After time effects, lagged income growth and

lagged consumption growth are controlled for (last column), the coefficient on high house prices is 0.12, the coefficient on

low house prices is nearly twice as large at 0.19, and their difference is statistically larger than 0 at the 10% significance

level. 

Because the effects of low and high house prices on consumption work in our model through tightening or relaxing

borrowing constraints, it is important to check whether measures of leverage also depend asymmetrically on house prices.

Appendix F confirms that mortgage originations depend asymmetrically on house prices too. 

6.2. MSA-level evidence 

Tables 5 and 6 present the results of evidence based on MSAs data, focusing on employment and auto sales. MSAs

account for about 80% of the population and employment in the entire United States. In Table 5 , the results from the

MSA-level regressions reinforce those obtained at the state level. After controlling for income, lagged employment and time

effects, the elasticities of employment to house prices are 0.05 and 0.09 when house prices are high and low, respectively.

These elasticities are larger than those found at the state level. 

A legitimate concern with the panel and time-series regressions discussed so far is that the correlation between house

prices and activity could be due to some omitted factor that simultaneously drives both house prices and activity. Even if

this were the case, our regressions would still be of independent interest, since – even in absence of a causal relationship –

they would indicate that comovement between house prices and activity is larger when house prices are low, as predicted

by the model. 

To support claims of causality, one needs to isolate exogenous from endogenous movements in house prices. Table 6 fol-

lows Mian and Sufi (2011) and Saiz (2010) in an attempt to distinguish an independent driver of housing demand that

better aligns with its model counterpart. The insight is to use the differential elasticity of housing supply at the MSA level

as an instrument for house prices, so as to disentangle movements in housing prices due to general changes in economic

conditions from movements in the housing market that are directly driven by shifts in housing demand in a particular area.

Because such elasticity is constant over time, we cannot exploit the panel dimension of our dataset, and instead use the

elasticity in two separate periods by running two distinct regressions of car sales on house prices. The first regression is

for the 20 02–20 06 housing boom period, the second for the 2006–2010 housing bust period. In practice, we rely on the
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Table 6 

MSA level: auto registrations and house prices. 

Cross-sectional regressions 

Sample Sample 

20 02–20 06 (Housing boom) 2006–2010 (Housing Bust) 

�hp �car �hp �car 

Elasticity −7.26 ∗∗∗ 4.69 ∗∗∗

(0.87) (0.57) 

�hp 0.24 ∗∗∗ 0.49 ∗∗∗

(0.06) (0.08) 

Method OLS IV OLS IV 

Observations 254 254 254 254 

R -squared 0.22 0.35 0.21 0.48 

Note : The table reports regressions using housing supply elasticity at the MSA level 

as an instrument for house prices in a regression of MSA car registrations on MSA 

house prices. The symbols ∗∗∗ , ∗∗ , ∗ denote estimates statistically different from zero 

at the 1, 5 and 10% confidence level. The housing supply elasticity is taken from 

Saiz (2010) and measures limits on real-estate development due to geographic fac- 

tors that affect the amount of developable land, as well as factors like zoning re- 

strictions. The elasticity data are available for 269 cities: 15 areas were dropped 

because they were covering primary metropolitan statistical areas (PMSA), which 

are portions of metropolitan areas, rather than complete MSAs. 

Data Sources : Car Registrations are retail (total less rental, commercial and govern- 

ment) auto registrations from Polk Automotive Data. �car is the percent change in 

car registrations. See Table 2 for other data sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

following differenced instrumental variable specifications: 

log hp t − log hp s = b 0 + b 1 Elasticity + ε b (29)

log car t − log car s = c 0 + c 1 
̂ ( log hp t − log hp s ) + ε c (30)

where s = 2002 and t = 2006 in the first set of regressions, and s = 2006 and t = 2010 in the second. 

The first stage, OLS regressions show that the elasticity measure is a powerful instrument in driving house prices, with an

R 2 from the first stage regression around 0.20 in both subperiods. The second stage regressions show how car sales respond

to house prices dramatically more in the second period, in line with the predictions of the model and with the results of the

panel regressions. In the 2002 − 2006 period, the elasticity of car sales to house prices is 0.24. In the 2006 − 2010 period,

in contrast, this elasticity doubles to 0.49. 25 

7. Debt relief and borrowing constraints 

The theoretical and empirical results show that movements in house prices can produce asymmetries that are economi-

cally and statistically significant. We now consider whether these asymmetries are also important for gauging the effects of

policies aimed at the housing market in the context of a deep recession. To illustrate our ideas, consider one simple example

of such policies, a lump-sum transfer from patient to impatient households. This policy could mimic voluntary debt relief

from the creditors, or a scheme where interest income is taxed and interest payments are subsidized in lump-sum fashion,

so that the end result is a transfer of resources from the savers to the borrowers. 

We consider this experiment against two different sets of initial conditions. In one case, house prices are below steady

state, and the collateral constraint binds; in the other case, house prices are above steady state, and the constraint is slack.

The initial house price levels are brought about by a sequences of unexpected shocks to housing preferences. 

Fig. 8 shows the combined response of house prices to the initial housing preference shocks and to the two transfer

shocks. Both transfer shocks are unforeseen and are sized at one percent of steady-state aggregate consumption. Each trans-

fer is governed by an AR(1) process with coefficient equal to 0.5. The first transfer starts in period 6. A series of unforeseen

innovations to the shock process phases in the transfer, until it reaches a peak of one percent of steady-state consumption.

Then, the auto-regressive component of the shock reduces the transfer back to 0. The first transfer happens against a back-

ground of housing price declines and tight borrowing constraints. The second transfer, starting in period 51, mimics the first

but happens against a backdrop of housing price increases and slack borrowing constraints. 

The top left panel of Fig. 8 shows house prices in deviation from their steady state. The transfer shocks have a negligible

effect on house prices, but their timing coincides with the series of housing preference shocks that change house prices.
25 Using ZIP-code level data and a sample that runs from 2007 to 2009, Mian et al. (2013) find a large elasticity (equal to 0.74) of auto sales to housing 

wealth during the housing bust, in line with our findings. Importantly, they also find that this elasticity is smaller in zip codes with a high fraction of 

non-housing wealth to total wealth. 
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Fig. 8. Transfer from lenders to borrowers with low and high house prices. 

Note : The figure shows responses to two unexpected lump-sum transfers from savers to borrowers sized at one percent of steady-state consumption. The 

first transfer (periods 6–13) happens against a backdrop of low house prices and tight collateral constraints. The second transfer (periods 51–58) happens 

against a backdrop of high house prices and slack collateral constraints. The initial house price levels obtain in response to a housing preference shock. 

The responses of consumption, hours, savers’ and borrowers’ consumption are shown in deviation from baseline to isolate the partial effect of the transfer 

shocks. Variables are plotted in red when the constraint is slack. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accordingly, the marginal effect of the transfer shocks differs strikingly depending on the initial house prices, as shown

in the remaining panels in Fig. 8 . The consumption response of borrower households is dramatically different depending

on the backdrop variation in house prices. When house prices are low, the borrowing constraint is tight and the marginal

propensity to consume of borrower households is elevated. When house prices are high, the borrowing constraint becomes

slack and the marginal propensity to consume of borrower households drops down closer to that for saver households.

In reaction to the transfer, consumption of the savers declines less, and less persistently, against a backdrop of housing

price declines. In that case, there are expansionary spillovers from the increased consumption of borrowers to aggregate

hours worked and output. Taking together the responses of savers and borrowers, the effects of the transfer on aggregate

consumption are sizable when house prices are low, and small when house prices are elevated. As a consequence, actions

such as mortgage relief can almost pay for themselves through their expansionary effects on economic activity in a scenario

of binding borrowing constraints. 

8. Conclusions 

Housing prices matter more during severe recessions than during booms through their asymmetric effects on collateral

constraints. These constraints were a key catalyst for the economic collapse of the Great Recession. 

The estimated model allows the assessment of costs and benefits of alternative policies aimed at restoring the efficient

functioning of the housing market. For instance, policies such as debt relief can produce outsize spillovers to aggregate con-

sumption in periods when collateral constraints are tight. The estimates of these spillover effects are larger than estimates

based on samples dominated by house price increases, as inference based on these periods can severely underpredict the

sensitivity of consumption to movements in housing wealth. 
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The paper has emphasized the role of housing as collateral for households and the effects of changes in housing wealth

on consumption. However, the mechanism at the heart of our argument has even broader applicability. For instance, to the

extent that fixed assets are used for collateral by entrepreneurs, local governments or exporters, the asymmetries highlighted

here for consumption could also be relevant for fixed investment, government spending, or the trade balance. 26 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jmoneco.2017.06.004
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Appendix A. House Prices and Consumption in U.S. Data Excluding the Great Re-
cession

Figure A.1 shows that the nonlinearity in the scatter plot between house prices and consumption in U.S.

data is in post–1975 data also excluding the collapse in house prices which started around 2005.

Appendix B. Equilibrium Conditions of the DSGE Model

We list here the equations describing the equilibrium of the DSGE model.

Let uc,t (and uc′,t), uh,t (and uh′,t), un,t (and un′,t) denote the time-t marginal utility of consumption,

marginal utility of housing and marginal disutility of labor (inclusive of the shock terms: that is, ut =

zt
(
Γc log (ct − εcct−1) + jtΓh log (ht − εhht−1)− 1

1+ηn
1+η
t

)
, and uc,t is the derivative of ut with respect

to ct). Let ∆ be the first difference operator, and let overbars denote steady states. The set of necessary

conditions for an equilibrium is given by:

• Budget constraint for patient households:

ct + qt∆ht + it −
Rt−1bt−1

πt
=

wtnt

xw,t
+ rk,tkt−1 − bt + divt, (B.1)

where lump-sum dividends from ownership of final goods firms and from labor unions are given by

divt =
xp,t−1
xp,t

yt +
xw,t−1
xw,t

wtnt.

• Capital accumulation equations for patient households:

uc,tqk,t

(
1− ϕ

∆it

i

)
= uct − βEt

(
uc,t+1qk,t+1ϕ

∆it+1

i

)
, (B.2)

uc,t
qk,t
at

= βEt

(
uc,t+1

(
rk,t+1 + qk,t+1

1− δk
at+1

))
(B.3)
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kt = at

(
it −

ϕ

2

∆i2t
i

)
+ (1− δk) kt−1 (B.4)

where qk,t is the Lagrange multiplier on the capital accumulation constraint.

• Other optimality conditions for patient households:

uc,t = βEt (uc,t+1Rt/πt+1) , (B.5)
wt

xw,t
uc,t = un,t, (B.6)

qtuc,t = uh,t + βEtqt+1uc,t+1. (B.7)

• Budget and borrowing constraint and optimization conditions for impatient households:

c′t + qt∆h′t +
Rt−1

πt
bt−1 =

w′
t

x′w,t

n′
t + bt + div′t, (B.8)

bt ≤ γ
bt−1

πt
+ (1− γ)mqth

′
t, (B.9)

(1− λt)uc′,t = β′Et

(
Rt − γλt+1

πt+1
uc′,t+1

)
, (B.10)

w′
t

x′w,t

uc′,t = un′,t , (B.11)

qtuc′,t = uh′,t + β′qt+1uc′,t+1 + uc′,tλt (1− γ)mqt, (B.12)

where lump-sum dividends from labor unions are given by div′t =
xw′,t−1

xw′,t
w′
tn

′
t, and λt is the Lagrange

multiplier on the borrowing constraint (normalized by the marginal utility of consumption uc′,t).

• Firm problem, aggregate production, and Phillips curves:

yt = n
(1−σ)(1−α)
t n

′σ(1−α)
t kαt−1, (B.13)

(1− α) (1− σ) yt = xp,twtnt, (B.14)

(1− α)σyt = xp,tw
′
tn

′
t, (B.15)

αyt = xp,trk,tkt−1, (B.16)

log (πt/π) = βEt log (πt+1/π)− επ log (xp,t/xp) + up,t, (B.17)

log (ωt/π) = βEt log (ωt+1π)− εw log (xw,t/xw) + uw,t, (B.18)

log
(
ω′
t/π
)

= β′Et log
(
ω′
t+1/π

)
− ε′w log

(
x′w,t/x

′
w

)
+ uw,t. (B.19)

Above, ωt = wtπt
wt−1

and ω′
t =

w′
tπt

w′
t−1

denote wage inflation for each household type, and επ =

(1−θπ)(1−βθπ)
θπ

, εw = (1−θw)(1−βθw)
θw

, ε′w = (1−θw)(1−β′θw)
θw

.

• Monetary policy:

Rt = max

(
1, RrR

t−1

(
πA
t

πA

)(1−rR)rπ (yt
y

)(1−rR)rY

R
1−rR

er,t

)
, (B.20)
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where πA
t is year-on-year inflation (expressed in quarterly units) and is defined as πA

t ≡ (Pt/Pt−4)
0.25.

• Market clearing:

ht + h′t = 1. (B.21)

By Walras’ law, the good’s market clears, so that yt = ct + c′t + kt − (1− δk) kt−1.

Equations B.1 to B.21, together with the laws of motion for the exogenous shocks described in Section

3 of the paper, define a system of 21 equations in the following variables: c, c′, h, h′, i, k, y, b, n, n′, w,

w′, π, q, R, λ, xp, xw, x
′
w, rk, qk.

We use the methods described in Appendix D and more fully described in Guerrieri and Iacoviello

(2015) to solve the model subject to the two occasionally binding constraints given by equations B.9 and

B.20.

Appendix C. Estimation Details

Data. Data sources for the estimation are as follows:

1. Consumption

Model Variable: C̃t = log
ct+c′t
c+c′ .

Data: Real Personal Consumption Expenditures, from Bureau of Economic Analysis – BEA –

(Haver Analytics code: CH@USECON), log transformed and detrended with one-sided HP filter

(smoothing parameter equal to 100, 000).

2. Price Inflation

Model Variable: π̃t = log πt
π .

Data: quarterly change in GDP Implicit Price Deflator, from BEA (DGDP@USECON), minus 0.5

percent.

3. Wage Inflation

Model Variable: ω̃t = log
σωt+(1−σ)ω′

t
π .

Data: Real Compensation per Hour in Nonfarm Business Sector (LXNFR@USECON), log trans-

formed, detrended with one-sided HP filter (smoothing parameter equal to 100, 000), first differ-

enced, and expressed in nominal terms adding back price inflation.

4. Investment

Model Variable: ĩt = log it
i
.

Data: Real Private Nonresidential Fixed Investment, from BEA (FNH@USECON), log transformed

and detrended with one-sided HP filter (smoothing parameter equal to 100, 000).

5. House Prices

Model Variable: q̃t = log qt
q .

Data: Corelogic House Price Index (USLPHPIS@USECON) divided by GDP Implicit Price De-

flator, log transformed and detrended with one-sided HP filter (smoothing parameter equal to

100, 000).
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6. Interest Rate

Model Variable: r̃t = Rt − 1.

Data: Effective Federal Funds Rate, annualized percent (FEDFUNDS@USECON), divided by 400

to express in quarterly units.

Appendix D. DSGE Model: Solution Method and Accuracy Checks

Solution Method. We use a nonlinear solution method to find the equilibrium allocations of the

model in Section 3. The method resolves the problem of computing decision rules that approximate

the equilibrium well both when the borrowing constraint binds, and when it does not (similar reasoning

applies to the nonnegativity constraint on the interest rate, as described at the end of this section).

The economy features two regimes: a regime when collateral constraints bind; and a regime in which

they do not, but are expected to bind in the future.i With binding collateral constraints, the linearized

system of necessary conditions for an equilibrium can be expressed as

A1EtXt+1 +A0Xt +A−1Xt−1 + Bϵt = 0, (D.1)

where A1, A0, and A−1 are matrices of coefficients conformable with the vector X collecting the model

variables in deviation from the steady state for the regime with binding constraints; and ϵ is the vector

collecting all shock innovations (and B is the corresponding conformable matrix). Similarly, when the

constraint is not binding, the linearized system can be written as

A∗
1EtXt+1 +A∗

0Xt +A∗
−1Xt−1 + B∗ϵt + C∗ = 0, (D.2)

where C∗ is a vector of constants. When the constraint binds, we use standard linear solution methods

to express the decision rule for the model as

Xt = PXt−1 +Qϵt. (D.3)

When the collateral constraints do not bind, we use a guess-and-verify approach. We shoot back towards

the initial conditions, from the first period when the constraints are guessed to bind again. For example,

if the constraints do not bind in t but are expected to bind the next period, the decision rule for period

t can be expressed, starting from D.2 and using the result that EtXt+1 = PXt , as:

Xt = − (A∗
1P +A∗

0)
−1 (A∗

−1Xt−1 + B∗ϵt + C∗) . (D.4)

We proceed in a similar fashion to compute the allocations for the case when collateral constraints are

guessed not to bind for multiple periods, or when they are foreseen to be slack starting in periods beyond

t. As shown by equation D.4, the model dynamics when constraints are not binding depend both on the

current regime (through the matrices A∗
1,A∗

0 and A∗
−1) and on the expectations of future regimes when

constraints will bind again (through the matrix P, which is a nonlinear function of the matrices A1, A0

and A−1).

i If one assumes that the constraints are not expected to bind in the future, the regime with slack borrowing constraints
becomes unstable, since borrowers’ consumption falls over time and their debt rises over time until it reaches the debt limit,
which contradicts the initial assumption.
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It is straightforward to generalize the solution method described above for multiple occasionally

binding constraints.ii The extension is needed to account for the zero lower bound (ZLB) on policy

interest rates as well as the possibility of slack collateral constraints. In that case, there are four possible

regimes: 1) collateral constraints bind and policy interest rates are above zero, 2) collateral constraints

bind and policy interest rates are at zero, 3) collateral constraints do no bind and policy interest rates

are above zero, 4) collateral constraints do not bind and policy interest rates are at zero. Apart from

the proliferation of cases, the main ideas outlined above still apply.

Local linearity of the Policy Functions. The solution of the model can be described by a policy

function of the form:

Xt = P(Xt−1, ϵt)Xt−1 +D(Xt−1, ϵt) +Q(Xt−1, ϵt)ϵt. (D.5)

The vector Xt collects all the variables in the model, except the innovations to the shock processes, which

are separated in the vector ϵt. The matrix of reduced-form coefficients P is state-dependent, as are the

vector D and the matrix Q. These matrices and vector are functions of the lagged state vector and of the

current innovations. However, while the current innovations can trigger a change in the reduced-form

coefficients, Xt is still locally linear in ϵt. To illustrate this point, Figure A.2 shows how the policy

function for impatient agents’ consumption c′t – one of the elements of Xt – depends on the realization

of the housing preference shock uj,t – one of the elements of ϵt – when all the other elements of Xt−1

are held at their steady–state value. The top panel shows the consumption function. This function is

piecewise linear, with each of the rays corresponding to a given number of periods in which the borrowing

constraint is expected to be slack. The bottom panel shows the derivative of the consumption function

with respect to uj,t. As the consumption function is piecewise linear, the derivative is not defined at the

threshold values of the shock uj,t that change the expected duration of the regime. However, each of

these threshold points for different shocks is a set of measure zero.iii

Realizations of the shock uj,t above a threshold will imply that the borrowing constraint is temporarily

slack. When the constraint is slack, the constraint will be expected to be slack for a number of periods

which increases with the size of the shock. Accordingly, consumption will respond proportionally less,

and the Qc′,uj
element of the matrix Q that defines the impact sensitivity of c′ to uj will be smaller.

Accuracy of Numerical Solution. We assess the accuracy of the solution method for the DSGE

model by computing the errors of the model’s intertemporal equations. The errors arise both because of

the linearization of the original nonlinear model, and because the method abstracts from precautionary

motives due to possibility of future regime switches. We focus here on the intertemporal errors for the

consumption and housing demand equations of patient and impatient agents, equations B.5, B.7, B.10

and B.12, and we compute the errors using standard monomial integration for the expectation terms

and simulating the model under the estimated filtered shocks (see Judd, Maliar, and Maliar 2011 for a

description of the monomial method). Across these equations, the mean absolute errors – expressed in

consumption units – are about 4× 10−4, that is, $4 for every $10,000 spent, a level that can be deemed

negligible.

ii For an array of models, Guerrieri and Iacoviello (2015) compare the performance of the piecewise perturbation solution
described above against a dynamic programming solution obtained by discretizing the state space over a fine grid. Their
results show that this solution method efficiently and quickly computes accurate policy functions.

iii It is straightforward to prove that the points where the derivative of the decision rule is not defined are of measure zero
given a choice of process for the stochastic innovations. By construction, there are only countably many of these points.
If there were uncountably many, a shock could lead to a permanent switch in regimes, which is ruled out by the solution
method.
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As standard practice (for instance, see Bocola 2016), Figure A.4 plots the histogram of the logarithm

with base 10 of the absolute value of these errors. On average, residual log errors are −2.9 and −2.92 for

the consumption and the housing Euler equations of the borrower, and−4.1 and−3.6 for the consumption

and housing Euler equations of the saver, indicating a miss of about $1 per $1000 of consumption for the

borrower’s Euler equations, and of about $1 per $10,000 of consumption for the saver’s Euler equations.

The small intertemporal errors indicate that precautionary motives, while potentially important, are,

on average, quantitatively small. Nonetheless, one may suspect that, in the housing boom that preceded

the crisis, agents would have wanted to engage in precautionary saving to insure against bad shocks, and

that, during the crisis, uncertainty about the path and duration of the zero lower bound on interest rates

would have affected macroeconomic outcomes through precautionary behavior. To assess this possibility,

we modify our solution algorithm to account for the possibility of future shocks. At each point for which

the solution is sought, this alternative algorithm augments the state space with sequences of anticipated

shocks and corrects current decisions by gauging the difference between the augmented expectations and

the original expectations.

To understand the modifications of our solution algorithm that allow for precautionary behavior,

consider, as an example, a forward-looking equation of the form:

qt = max (0, βEtqt+1 + εt) , εt ∼ NIID
(
0, σ2

)
. (D.6)

The perfect foresight solution assumes that the variance of εt+j is zero for j > 0. Under this assumption,

EPF
t qt+1 = 0, where EPF denotes the expectation operator under perfect foresight. Accordingly, the

solution under perfect foresight is qt = εt if εt ≥ 0, and qt = 0 if εt < 0 or, more succinctly:

qPF
t = max (0, εt) . (D.7)

We modify the solution by extending the expectation operator Et as follows. We augment the time-t

state space with two anticipated shocks to εt+1 of equal size, opposite sign and equal probability. When

integrating the expectations of εt+1, this approach is equivalent to considering two integration nodes and

weights, following the lead of Judd, Maliar, and Maliar (2011). Under this scheme, the two integration

nodes are σ are −σ, each with weight 1/2. Accordingly, the expectation of qt+1 can be defined as follows:

ERE1
t qt+1 = (1/2)max (0, σ) + (1/2)max (0,−σ) = (1/2)σ, (D.8)

where ERE1
t denotes the expectation taken assuming knowledge that additional shocks will occur in

period t+ 1. The solution for qt becomes:

qRE1
t = max (0, βσ/2 + εt) . (D.9)

We can proceed in similar fashion to add n−period ahead anticipated shocks (to εt+1, εt+2, ... εt+n ),

and choose optimally the number of anticipated shocks that yield the largest reduction in intertemporal

errors. We have found that 4−period ahead anticipated shocks yield the largest decline in the errors to

the intertemporal equations in the proximity of regime switches.iv

As this modification of the solution algorithm comes at a very large cost in terms of speed, we make

comparisons holding the filtered shocks and the estimated model parameters unchanged.v The modified

algorithm reduces the errors of the intertemporal equations, particularly in periods when the constraints

are close to switching. For instance, when the collateral constraint is slack but expected to bind in the

future, or vice versa – an occurrence which happens, according to our estimates, with some frequency

iv The optimal number of anticipated shocks is, in general, depends on the stochastic structure of model and its calibration.
For the simple example in the text, the optimal number of anticipated shocks is 3 when β = 0.99 and σ = 0.05.

v Solving the model for a particular sequence of shocks takes a fraction of a second using the algorithm that we employ
for Bayesian estimation. The modified algorithm that corrects for uncertainty about future shocks takes several minutes to
solve. While useful for assessing the accuracy of the solution, it is unusable for filtering and estimation.
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between 1998 and 2006, the consumption Euler errors (expressed in base 10 logs) for the borrower and

saver fall from −3.0 and −4.0 to −3.1 and −4.3, respectively. Despite the smaller intertemporal errors,

the modified solution method implies only negligible differences in the model’s business cycle properties:

as shown by Figure A.5, the discrepancies between the model’s simulated series are barely visible, except

perhaps in periods close to regime switches, when precautionary considerations ought to be heightened.

The modified solution method predicts a slightly smaller increase in total consumption (0.05 per-

centage point lower) at the peak of the housing boom, and a slightly larger decline in consumption at

the trough of the housing price collapse (half a percentage point larger). The smaller increase in con-

sumption during the boom owes to the presence of precautionary saving, as borrowers take on less debt

in anticipation of future negative shocks. The larger decrease in consumption during the bust owes to

the uncertainty about the zero lower bound. As elucidated, for instance, by Basu and Bundick (2017),

at the ZLB, uncertainty about future shocks causes an additional decline in output over and above the

decline caused by the shocks that led to the ZLB in the first place. Aside from these two episodes, the

differences between the solution methods are barely visible. Accordingly, we conclude that the shocks

and frictions in our model do not imply large precautionary motives.

As a further check, we confirmed that our solution method works well in comparison to standard

– yet slower – global solution methods when global methods can be easily deployed, as is the case for

the partial equilibrium model of Section 2. Starting from the non-stochastic steady state of the model,

Figure A.6 plots the responses of consumption, leverage and debt to positive and negative house price

shocks using both a standard global method (value function iteration) and the algorithm used to solve

the DSGE model for estimation purposes. As the figure shows, the two algorithms deliver very similar

dynamics for the variables of interest.

Appendix E. Specification Checks and Sensitivity Analysis

First, we check that our findings are insensitive to the assumption that the initial vector of endogenous

variables, X0, is equal to its steady-state value. Second, we show that our algorithm can accurately

recover the “true” structural shocks when the structural parameters are known. Third, we show that

when our estimation strategy is applied to data generated from the posterior mode of the model, the

estimated parameters are close to their true values. As for sensitivity analysis, we consider an alternative

detrending strategy, different shock structure and variable capacity utilization.

Initialization Scheme. Our estimation procedure makes use of the assumption that all variables

are known and equal to their nonstochastic steady state in the first period. The first 20 observations

are used to train the filter. As a robustness exercise, we have estimated our model under different

assumptions about the values of the initial state vector X0.
vi We confirmed the initial conditions were

essentially irrelevant by period 20 and that our estimated parameters were minimally affected by the

initial condition. Table A.1 compares the benchmark results with the estimation results assuming a

different known initial condition (see Column 4), randomly sampled from the distribution of the model

state variables based on the model’s estimated mode.

Filtering. Our estimation procedure relies on using a nonlinear equation solver in order to filter, in

each period t, the sequence of shocks ϵt that reproduces the observations in the vector Yt. It is possible

vi By treating the initial distribution of X0 as known, we eliminate the conditionality of the likelihood function for the
observed data Y T on both X0 and Y0. Without this assumption, one needs to integrate the likelihood for Y T over the
distribution for X0 implied by the specification of the model and the observed data, and simulation-based methods (such
as the particle filter or the unscented Kalman filter) become necessary.
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that small numerical errors in retrieving ϵt at each point in time may propagate over time and lead to

inaccuracies in computing the filtered shocks. To explore the practical relevance of this possibility, we

generate an artificially long sample of observables from our model. Drawing from the posterior mode,

we generate a time series of artificial observations of length T = 500. We then use our procedure to filter

these shocks back and compare the filtered shocks to the “true” ones used to generate our artificial data

set. The correlation between the “true” shocks and the filtered ones is, for all shocks, extremely high,

ranging from 0.998 for the monetary shock to 0.999992 for the wage shock.

Identifiability. Following Schmitt-Grohé and Uribe (2012), with estimated parameters set to their

posterior mode, we generate a sample of 120 observations (comparable in size to our actual dataset) and

then estimate the model parameters using the same methods and procedures applied to the observed

data, both with our Bayesian approach and with uninformative priors – maximum likelihood estimation

(MLE). At no point does our estimation procedure make use of knowledge of the true parameter values.

In this case, too, our estimation strategy comes close to uncovering the true shocks and the true values

of the parameters in question. For instance, the estimated wage share of impatient households at the

mode is 0.52 in the Bayesian approach, 0.38 in the MLE case. All the other estimated coefficients are

reported in columns 5 and 6 of Table A.1.

Detrending Method. We use a one-sided HP filter to construct the data analogues to our model

variables prior to estimation. As an alternative, we have incorporated linear deterministic trends in the

model and estimated the parameters governing the trends jointly with the other parameters. Specifically,

we have assumed three separate deterministic trends for neutral technology, investment goods technology,

and housing supply technology. Given our assumptions about preferences and technology, these three

separate trends yield a balanced growth path in which real consumption (together with real wages), real

investment, and real house prices grow at different rates (even if the nominal shares of consumption,

investment and housing expenditures remain constant). The model with deterministic trends implies

slightly more persistent and more volatile shocks, presumably in order to account for the larger and

more persistent deviations of the observations around their constant trends. The additional estimation

results are reported in Column 7 of Table A.1.

Allowing for Neutral Technology Shocks and Variable Capacity Utilization. Our benchmark

specification includes six shocks (investment-specific shocks, wage markup, price markup, monetary pol-

icy, intertemporal preferences, and preferences for housing). As a robustness exercise, we also considered

an additional shock, a shock to the level of neutral technology (denoted by aN ) paired with variable

capacity utilization (denoted by zt). To introduce shocks to neutral technology, Equation (B.13) is

modified as follows:

yt = aNt n
(1−σ)(1−α)
t n

′σ(1−α)
t (ztkt−1)

α. (E.1)

where the process for aN is

log(aNt ) = ρA log(aNt−1) + ua,t. (E.2)

The parameter ρA is the AR(1) coefficient and ua,t is an innovation which is normally, independently

and identically distributed. With variable utilization, the capital accumulation equation becomes

kt = at

(
it − ϕ

(it − it−1)
2

i

)
+ (1− δk,t) kt−1, (E.3)
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and, in turn, the depreciation rate δk,t becomes time-varying and evolves according to

δk,t = δk + bKζKz2t /2 + bK (1− ζK) zt + bK (ζK/2− 1) , (E.4)

where the parameter ζK > 0, between 0 and 1, measures the curvature of the capital-utilization function,

and where bK = 1/β − (1− δK) is a normalization that guarantees that steady-state utilization is

unity. We assume a decentralization (as in Iacoviello and Neri 2010) where patient households rent

capital services (given by ztkt−1) to wholesale firms and choose the capital utilization rate subject to the

additional constraint given by equation (E.4).

We also introduce an additional observation equation:

TFPt = (âNt ) + Shi(ât); (E.5)

where the observed measure of total factor productivity, TFPt, is the (detrended) utilization-adjusted

total-factor productivity of Fernald 2012, where Shi is the investment share in total absorption, and

where the hat symbol denotes a variable expressed in deviation from its steady state. The observation

equation takes into account that there are two sources of changes for total factor productivity in our

model, the neutral technology aN and the investment-specific technology a.

The model with the neutral technology shocks and variable capacity implies a higher fraction of

impatient households and minor changes in the rest of the estimated parameters. As a result, the

housing collapse plays a larger role than in our benchmark model in accounting for the consumption

decline in the Great Recession. The additional estimation results are reported in Column 8 of Table A.1.

As an alternative to the level shocks for neutral technology, we also consider growth rate shocks,

allowing for a small error correction component. In this case,

log(aNt )− log(aNt−1) = ρA
(
log(aNt−1)− log(aNt−2)

)
− ρECM log(aNt−1) + ua,t; (E.6)

where ρECM = 0.0025, a small number that ensures long-run convergence of neutral technology towards

its non stochastic steady state at the rate of one percent a year. The mode of the estimated parameters

under this configuration is reported in Column 9 of Table A.1

Figure A.7 provides a comparison of the contribution of technology shocks for the evolution of key

variables across specifications. In each case, the solid lines show the observed variables (detrended). The

shaded areas show the evolution of those same variables when only the estimated technology shocks are

turned on – both investment-specific and neutral, if present. (Recall that, by construction, the model

matches the observations when all shocks are turned on.) The top row of the figure shows the results for

our baseline setup, that considers only investment-specific technology shocks. The middle and bottom

rows show sensitivity analysis for the inclusion of neutral technology shocks, in levels for the middle row,

and in growth rates for the bottom row.

The figure shows some common patterns: 1) In all cases, the technology shocks account for the

bulk of the observed investment movements; 2) The addition of the neutral shocks has an impact on

consumption, but the timing is generally off, so that the contributions of the technology shocks need to

be offset by other shocks; 3) in all cases, the technology shocks only make a modest contribution to the

evolution of house prices, though this contribution is marginally beefier when including shocks to the

growth rate of technology.
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Appendix F. State-Level Evidence on Mortgage Originations

Because the effects of low and high house prices on consumption work in our model through tightening

or relaxing borrowing constraints, it is important to check whether measures of credit also depend

asymmetrically on house prices. Table A.2 shows how mortgage originations at the state level respond

to changes in house prices. We choose mortgage originations because they are available for a long time

period, and because they are a better measure of the flow of new credit to households than the stock of

existing debt. In all of the specifications in Table A.2, mortgage originations depend asymmetrically on

house prices, too.
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Schmitt-Grohé, S. and M. Uribe (2012). What’s news in business cycles. Econometrica 80 (6), 2733–

2764. [A.8]

A.11



Table A.1: Estimation Results: Robustness Analysis

Specification Checks Sensitivity

1. 2. 3. 4. 5. 6. 7. 8. 9.

Bench. No Always Different Bayes MLE Lin. N. Tech. N. Tech.

Constr. Binding Init.Cond. Artif.Data Artif.Data Trend Level Growth

β′ 0.9922 0.9860 0.9915 0.9868 0.9898 0.9844 0.9910 0.9874

εc 0.6842 0.8211 0.7005 0.7002 0.6568 0.6755 0.7178 0.7534 0.7540

εh 0.8799 0.7717 0.8622 0.8973 0.9057 0.8873 0.9047 0.9095 0.9045

ϕ 4.1209 5.1604 4.5890 6.3518 3.8579 5.4071 4.9318 1.4724 2.1126

σ 0.5013 0.4421 0.5383 0.3760 0.5210 0.4343 0.5729 0.3395

rπ 1.7196 1.8042 1.8773 1.9417 1.8660 1.9267 1.8554 1.6403 1.0058

rR 0.5509 0.5412 0.5616 0.6133 0.5771 0.5017 0.6059 0.5429 0.5767

rY 0.0944 0.0905 0.0955 0.0946 0.1195 0.1114 0.0630 0.1112 0.1043

θπ 0.9182 0.9035 0.9075 0.9184 0.8430 0.8975 0.9467 0.9271 0.9491

θw 0.9163 0.8857 0.9125 0.9120 0.8717 0.9209 0.9274 0.9290 0.9655

γ 0.6945 0.6181 0.7189 0.6610 0.7188 0.6425 0.7858 0.6901

ρJ 0.9835 0.9863 0.9806 0.9829 0.9332 0.9798 0.9867 0.9857 0.9865

ρK 0.7859 0.7888 0.7834 0.7499 0.7969 0.8403 0.8142 0.8232 0.8136

ρR 0.6232 0.6537 0.6296 0.6210 0.5430 0.6559 0.7442 0.6013 0.5929

ρZ 0.7556 0.6639 0.7419 0.7695 0.7084 0.7404 0.8251 0.6996 0.7633

σJ 0.0737 0.0745 0.0820 0.0745 0.1612 0.0822 0.0710 0.0647 0.0663

σK 0.0360 0.0409 0.0395 0.0535 0.0366 0.0434 0.0377 0.0192 0.0206

σP 0.0030 0.0030 0.0031 0.0029 0.0034 0.0031 0.0031 0.0030 0.0030

σR 0.0013 0.0013 0.0013 0.0013 0.0016 0.0013 0.0014 0.0013 0.0013

σW 0.0100 0.0103 0.0100 0.0103 0.0104 0.0098 0.0097 0.0099 0.0096

σZ 0.0163 0.0297 0.0172 0.0177 0.0154 0.0166 0.0197 0.0208 0.0214

τC 0.0073

τK 0.0107

τ q 0.0043

ζK 0.5234 0.5474

ρA 0.8427 0.7452

σA 0.0078 0.0067

Note: Each column reports the mode of the estimated parameters for various specifications. Column (1) reports estimates

for the benchmark model. Column (2) refers to model without collateral-constrained households. Column (3) refers to the

model where the collateral constraint if always binding. Column (4) is the estimated mode using a different initial condition.

Columns (5) and (6) report Bayesian and maximum likelihood estimates (MLE) using artificial data generated by the model

with parameters set at the values in (1). Column (7) report the model with linear deterministic trends, where τC , τK , τ q

are the implied growth rates for real consumption, real investment, real house prices. Column (8) refers to the model with

shocks to the level of neutral technology and variable utilization, where ρA and σA are the AR(1) coefficient and standard

deviation of those shocks. The parameter ζK is the curvature (between 0 and 1) of the utilization cost function, where 0 (1)

indicates that utilization can be changed at a small (large) cost. Column (9) reports estimates for the model with shocks to

the growth rate of neutral technology, where ρA and σA are the AR(1) coefficient and standard deviation of those shocks.
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Table A.2: State-Level Regressions: Mortgage Originations and House Prices

% Change in Mortgage Originations (∆morit)

∆hpt−1 1.10***
(0.18)

∆hp hight−1 -0.41* 1.08*** 1.46*** 1.54***
(0.24) (0.16) (0.21) (0.33)

∆hp lowt−1 3.13*** 1.85*** 2.53*** 2.67**
(0.59) (0.68) (0.90) (1.11)

∆morit−1 -0.20*** -0.20***
(0.02) (0.02)

∆incomet−1 -0.63
(1.04)

pval difference 0.000 0.211 0.160 0.181

Time effects no no yes yes yes
Observations 1020 1020 1020 969 969

States 51 51 51 51 51
R-squared 0.01 0.03 0.58 0.53 0.53

Note: The table report state-level regressions using annual observations from 1992 to 2011 for 50 States and the District

of Columbia. Robust standard errors are shown in parentheses. The symbols ***,**,* denote estimates statistically different

from zero at the 1, 5 and 10% confidence level. In the table, pval is the p-value of the test for differences in the coefficients

for high and low house prices.

Data Sources and Definitions: ∆mori is the percent change in “Mortgage originations and purchases: Value” from the

U.S. Federal Financial Institutions Examination Council: Home Mortgage Disclosure Act. See Table 2 for other variable

definitions.
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Figure A.1: House Prices and Consumption in U.S. National Data, excluding the post-2005 period
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Figure A.2: Local Linearity of the Policy Functions
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Note: The top panel plots consumption of the impatient agent (in deviation from the steady state) as a function

of various realizations of the housing preference shock. The bottom panel plots the slope of the consumption function.

The consumption function has a kink when the borrowing constraint becomes binding, and becomes flatter the larger the

realization of the housing preference shock.
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Figure A.3: Impulse Responses to All Shocks for the Estimated Model
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Figure A.4: Accuracy of Solution Method: Intertemporal Errors for the DSGE Model
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Figure A.5: Accuracy of Solution Method: Simulated Time Series
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Figure A.6: Accuracy of Solution Method: Comparison of Impulse Responses for the Basic Model
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period 1. The solid lines plot the responses using the approximate solution method used for the estimation of the DSGE

model. The dashed lines plot the impulse responses using the global solution method (value function iteration).
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Figure A.7: The Contribution of Technology Shocks To the Evolution of Key Observed Variables Under
Alternative Model Specifications
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The only technology shocks in the baseline specification are shocks to the level of investment-specific technology. The
alternative specifications layer on neutral technology shocks. In each panel, the red solid lines denote observed variables
(detrended), while the black bars show the evolution of those same variables when only the estimated technology shocks are
turned on – both investment-specific and neutral technology shocks. (Recall that, by construction, the model matches the
observations when all shocks are turned on.) Finally, the shaded areas denote recession periods, following the chronology
determined by the NBER Business Cycle Dating Committee.
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