The Inflationary Effects of Sectoral Reallocation

Francesco Ferrante

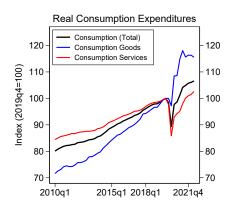
Sebastian Graves Matteo Jacoviello

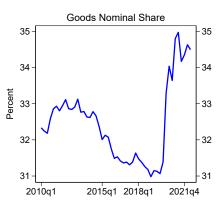
Federal Reserve Board

July 1, 2023 SED, Cartagena

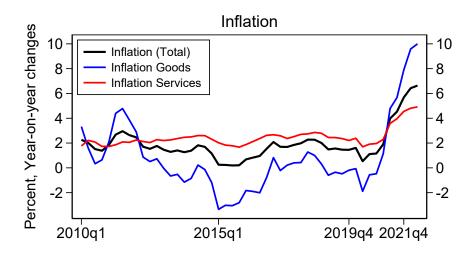
DISCLAIMER: The views expressed are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System.

Overview

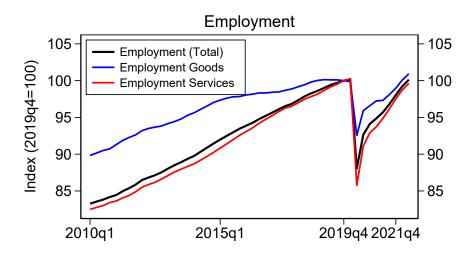

1. Motivation

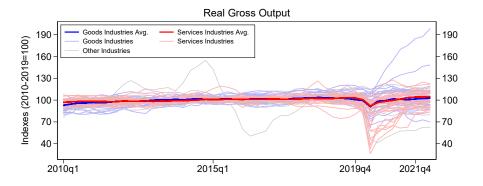

- 2. Model
- 3. COVID-Demand Shock
- 4. All Shocks
- 5. Experiments

Conclusion


Appendix

Fact 1: Sudden Shift in Consumption Expenditures




Fact 2: Rise in Inflation

Fact 3: Fall in Employment

Fact 4: Increase in Industry-level Dispersion

How Does Demand Reallocation Affect Inflation?

We study reallocation in New Keynesian model with

- 1. multi-sector input-output structure
- 2. costly input adjustment (hiring costs)
- 3. heterogeneous price rigidity across sectors

We estimate the model with three shocks:

- 1. Preference shift from services to goods ("COVID demand shock")
- 2. Sector-specific TFP shocks
- 3. Aggregate Labor Supply Shock ("Great Resignation")

Main Results

- Demand reallocation explains a large portion of the rise in US inflation
 - 1. Hiring frictions \Rightarrow (1) goods sectors struggle to expand; (2) services sectors cut employment sharply $\Rightarrow \uparrow$ inflation
 - 2. Goods prices more flexible than services $\Rightarrow \uparrow \uparrow$ inflation
- Demand reallocation explains cross-sectional industry dynamics
- TFP shocks and labor supply shock explain less of aggregate inflation
- Unexpected shift in demand back to services may be inflationary
- Negative sectoral TFP shocks in 2022 partly explain why inflation stayed high

Overview

1. Motivation

- 2. Model
- 3. COVID-Demand Shock
- 4. All Shocks
- 5. Experiments

Conclusion

Appendix

Model Summary: Households

- Households consume goods and services
- Each are a bundle of output of the N sectors of the economy
- Time-varying preferences for goods/services (demand reallocation shock)

$$C_t = \left(\frac{C_t^g}{\omega_t}\right)^{\omega_t} \left(\frac{C_t^s}{1 - \omega_t}\right)^{1 - \omega_t}$$

Supply labor to firms (labor supply shock)

$$U(C, N) = \frac{C^{1-\gamma}}{1-\gamma} - \frac{N^{1+\psi}}{1+\psi}$$

Model Summary: Firms

In each sector *i* there are 3 types of firms:

- 1. Representative Competitive Producer
- 2. Monopolistically Competitive Firms (sectoral productivity shocks)

$$\begin{aligned} Y_t^i &= \mathbf{A}_t^i \left(\alpha_i^{\frac{1}{\epsilon_Y}} (M_t^i)^{\frac{\epsilon_Y - 1}{\epsilon_Y}} + (1 - \alpha_i)^{\frac{1}{\epsilon_Y}} (L_t^i)^{\frac{\epsilon_Y - 1}{\epsilon_Y}} \right)^{\frac{\epsilon_Y}{\epsilon_Y - 1}} \\ M_t^i &= \left(\sum_{j=1}^N \Gamma_{i,j}^{\frac{1}{\epsilon_M}} (M_{j,t}^i)^{\frac{\epsilon_M - 1}{\epsilon_M}} \right)^{\frac{\epsilon_M}{\epsilon_M - 1}} \end{aligned}$$

3. Labor agencies (hiring costs)

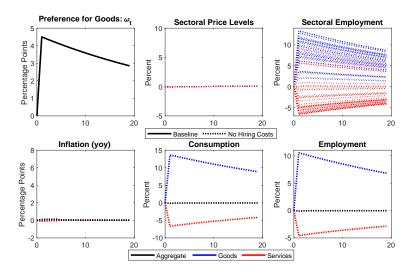
Profits =
$$P_t^{L,i} L_t^i - W_t L_t^i \left(1 + \mathbb{1}(L_t^i > L_{t-1}^i) \frac{c}{2} \left(\frac{L_t^i}{L_{t-1}^i} - 1 \right)^2 \right)$$

Taking the Model to the Data: Calibration

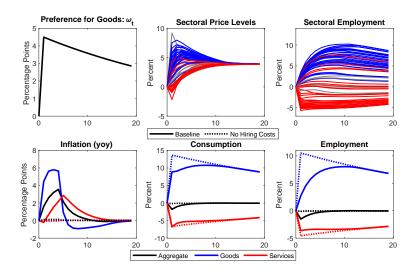
- Calibrated Parameters
 - Many parameters set to standard values $(\beta, \gamma, \phi, \psi)$ etc
 - Use N = 66 private industries
 - ► Factor/consumption shares: BEA I-O Tables & PCE Bridge
 - ▶ Sector price stickiness from Pasten, Schoenle and Weber (2020):
 - Key feature: goods prices more flexible than services
- Calibrated Shocks
 - 1. Demand reallocation shock $\uparrow \omega_t$: match \uparrow in goods expenditure share
 - 2. Sectoral Productivity shocks ΔA_t^i : calibrated to sectoral TFP data calculated following Vom Lehn and Winberry (2022)

Taking the Model to the Data: Estimation

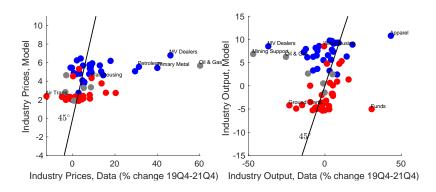
- Estimated Parameters
 - ▶ Production function elasticities (ϵ_M and ϵ_Y)
 - ► Hiring costs (*c*)
- Estimated Shocks
 - ▶ Labor supply shock ($\uparrow \chi_t$)
- Estimated parameters/shocks chosen to minimize distance between model and data:
 - Cross-section of goods, services prices
 - Cross-section of goods, services output
 - Cross-section of goods, services employment
 - Aggregate employment
 - Goods inflation less services inflation


Overview

- 1. Motivation
- 2. Model
- 3. COVID-Demand Shock
- 4. All Shocks
- 5. Experiments


Conclusion

Appendix


Reallocation Shock without Frictions ($\uparrow \omega_t$)

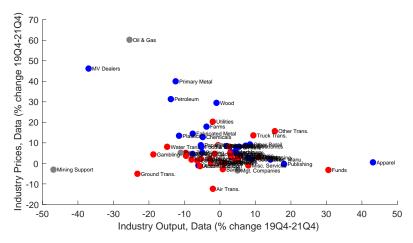
Reallocation Shock in the Baseline Model ($\uparrow \omega_t$)

Reallocation Shock in the Cross-Section

Overview

- 1. Motivation
- 2. Model
- 3. COVID-Demand Shock

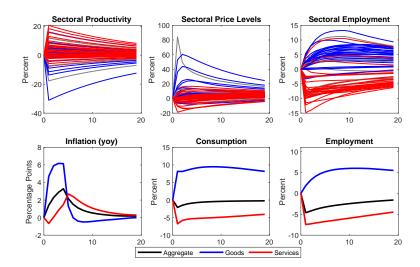
4. All Shocks


5. Experiments

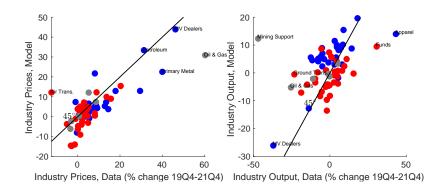
Conclusion

Appendix

Industry Dispersion in Price and Output Growth


For some industries, price and quantity dynamics are hard to explain with the dynamics following demand reallocation shock:

Adding TFP Shocks and Labor Supply Shocks


- We measure evolution of TFP at the industry level between 2019 and 2021 and feed estimated idiosyncratic TFP into model
- We estimate the size of the aggregate labor supply shock required to match decline in aggregate employment

All Three Shocks: Aggregates

All Three Shocks: Cross-Section

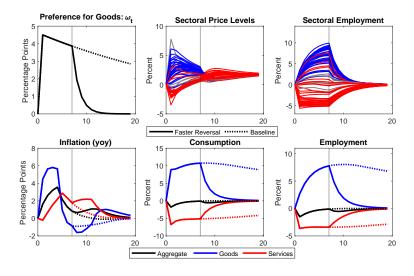
Overview

- 1. Motivation
- 2. Model
- 3. COVID-Demand Shock
- 4. All Shocks

5. Experiments

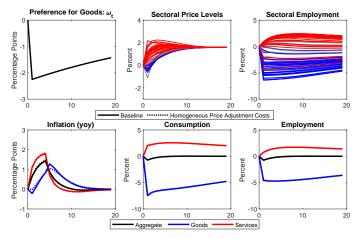
Conclusion

Appendix

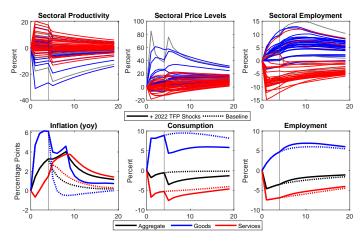

What if demand shifts back faster than expected?

- ullet We have assumed demand reallocation shock is persistent (ho=0.975)
- ullet Now assume that this falls to ho=0.5 after 8 quarters

 Inflation rises again: services sectors had cut employment too much and now face hiring costs


► Unexpected Persistence Experiment

Reversal Experiment


Demand Reallocation During the Great Recession

Large shift in demand during Great Recession boosted inflation, all else equal; consistent with missing disinflation

Additional Productivity Shocks in 2022

Large negative sectoral TFP shocks in 2022:H1 (Oil and Gas, Electronics) cause inflation to stay high for longer

Overview

- 1. Motivation
- 2. Model
- 3. COVID-Demand Shock
- 4. All Shocks
- 5. Experiments

Conclusion

Appendix

Conclusion

- Demand reallocation shock
 - 1. Explains a large portion of the rise in US inflation
 - 2. Can also explain cross-sectional developments
- TFP shocks improve cross-sectional fit further
- TFP and labor supply shocks explain less of aggregate inflation, but TFP shocks matter more in 2022
- Unexpected reversal of demand may be inflationary

Overview

- 1. Motivation
- 2. Model
- 3. COVID-Demand Shock
- 4. All Shocks
- 5. Experiments

Conclusion

Appendix

Model: Households

- Consume goods and services
- Each are a bundle of output of the N sectors of the economy
- Time-varying preferences for goods services (reallocation shock)
- Supply labor to firms

Households

Households problem:

$$\max E_t \sum_{i=0}^{\infty} \frac{C_{t+i}^{1-\gamma}}{1-\gamma} - \chi_t \frac{(N_{t+i})^{1+\psi}}{1+\psi}$$
 (1)

where

$$C_t = \left(\frac{C_t^g}{\omega_t}\right)^{\omega_t} \left(\frac{C_t^s}{1 - \omega_t}\right)^{1 - \omega_t} \tag{2}$$

$$C_t^g = \prod_{i=1}^N \left(\frac{C_{i,t}^g}{\gamma_i^g} \right)^{\gamma_i^g} \text{ and } C_t^s = \prod_{i=1}^N \left(\frac{C_{i,t}^s}{\gamma_i^s} \right)^{\gamma_i^s}$$
(3)

subject to

$$P_t C_t + B_{t+1} = W_t N_t + (1 + i_{t-1}) B_t + Profits_t$$
(4)

Model: Firms

In each sector there are 3 types of firms:

- 1. Representative Competitive Producer
- 2. Monopolistically Competitive Firms
- 3. Labor Agencies

Model: Monopolistically Competitive Firms

$$Y_t^i = A_t^i \left(\alpha_i^{\frac{1}{\epsilon_Y}} (M_t^i)^{\frac{\epsilon_Y - 1}{\epsilon_Y}} + (1 - \alpha_i)^{\frac{1}{\epsilon_Y}} (L_t^i)^{\frac{\epsilon_Y - 1}{\epsilon_Y}} \right)^{\frac{\epsilon_Y}{\epsilon_Y - 1}}$$
(5)

$$M_t^i = \left(\sum_{i=1}^N \Gamma_{i,j}^{\frac{1}{\epsilon_M}} (M_{j,t}^i)^{\frac{\epsilon_M - 1}{\epsilon_M}}\right)^{\frac{\epsilon_M}{\epsilon_M - 1}} \tag{6}$$

Sector-specific Rotemberg price adjustment costs $(\kappa_i) \rightarrow$

$$1 - \epsilon + \epsilon \frac{MC_t^i}{P_t^i} - \kappa_i (\Pi_t^i - 1)\Pi_t^i + E_t \left(M_{t+1}\Pi_{t+1}^i (\Pi_{t+1}^i - 1) \frac{Y_{t+1}^i}{Y_t^i} \right) = 0$$
(7)

Model: Labor Agencies

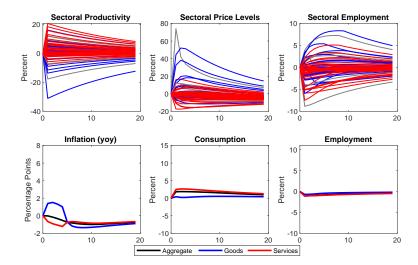
- Labor agency in each sector hires labor from HHs at W_t and supplies it to monopolistically competitive firms at $P_t^{L,i}$
- Subject to convex hiring costs

$$V_{t}(L_{t-1}^{i}) = \max_{L_{t}^{i}} P_{t}^{L,i} L_{t}^{i} - W_{t} L_{t}^{i} \left(1 + \mathbb{I}(L_{t}^{i} > L_{t-1}^{i}) \frac{c}{2} \left(\frac{L_{t}^{i}}{L_{t-1}^{i}} - 1 \right)^{2} \right) + E_{t}[M_{t+1} V_{t+1}(L_{t}^{i})] \quad (8)$$

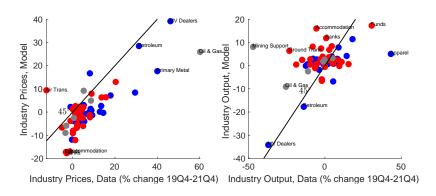
Monetary Policy and Equilibrium

Monetary policy follows a standard Taylor rule.

$$log(i_t) = log(R_{ss}) + \phi \log \Pi_t$$
 (9)

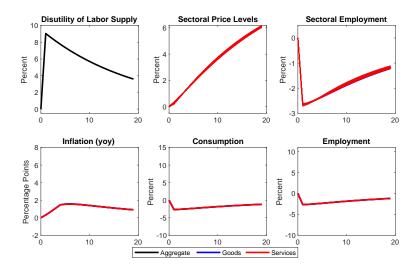

where $\Pi_t = \frac{P_t}{P_{\star-1}}$. Goods market clearing:

$$Y_t^i = C_{i,t}^g + C_{i,t}^s + \sum_{j=1}^N M_{i,t}^j \quad \forall i$$
 (10)

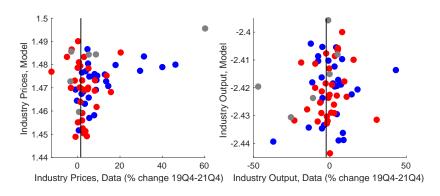

Labor market clearing:

$$\sum_{j=1}^{N} L_{t}^{i} \left(1 + \mathbb{1}(L_{t}^{i} > L_{t-1}^{i}) \frac{c}{2} \left(\frac{L_{t}^{i}}{L_{t-1}^{i}} - 1 \right)^{2} \right) = N_{t}$$
 (11)

TFP Shocks: Aggregates

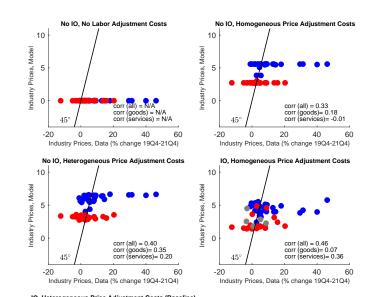


TFP Shocks: Cross-section



Labor Supply Shock: Aggregates

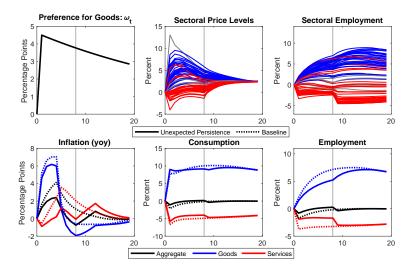
Labor Supply Shock: Cross-section



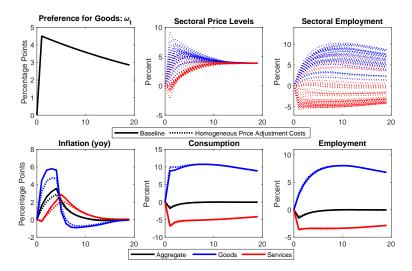
Parameters

Calibrated Parameters/Shocks	Value	Target/Source
γ	2	Standard
χ	1	Normalization
ψ	1	Standard
ϕ	1.5	Standard
β	0.995	Standard
ϵ	10	Standard
$\bar{\omega}$	0.31	Goods Expenditure Share
α_i	0.11 to 0.83	BEA
κ_i	0.05 to 98	?
$ ho_\omega$	0.975	Path of Goods Expenditure Share
$ ho_\chi$	0.95	Standard
ρ_A	0.95	Standard
Δ_{ω}	0.045	Δ Goods Expenditure Share
ΔA_t^i	-0.29 to 0.25	Measured Sectoral TFP
Estimated Parameters/Shocks	Value	Target/Source
С	35.6 (19.8)	Estimated (s.e.)
ϵ_{M}	0.01 (0.25)	Estimated (s.e.)
ϵ_Y	0.59 (0.04)	Estimated (s.e.)
$\Delta \chi$	0.10 (0.04)	Estimated (s.e)

Both I-O and Het Price Stickiness Important


What if demand shift was surprisingly persistent?

- We assumed persistence of demand reallocation shock known on impact
- ullet Now assume that everyone thought it was ho=0.5 for first 8 quarters
- Households and firms are repeatedly surprised about the persistence for two years (true persistence still $\rho=0.975$)


• **Demand reallocation less inflationary**: services sectors cut employment less and prices more

Unexpected Persistence

COVID Demand Reallocation Shock ($\uparrow \omega_t$)

