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We build and estimate a two-sector dynamic stochastic general equilibrium model with two types of inventories: Input
inventories facilitate the production of finished goods, output inventories yield utility services. The estimated model
replicates the volatility and cyclicality of inventory investment and inventory-to-target ratios. Although inventories are
an important element of the model’s propagation mechanism, shocks to inventory efficiency are not an important source
of business cycles. When the model is estimated over two subperiods (pre- and post-1984), changes in the volatility of
inventory shocks or in structural parameters associated with inventories play a small role in reducing the volatility of
output.

1. INTRODUCTION

Macroeconomists recognize that inventories play an important role in business cycle fluctu-
ations, but constructing macroeconomic models that explain this role successfully has been an
elusive task. Early Real Business Cycle (RBC) models, such as Kydland and Prescott (1982),
treated inventories as a factor of production. However, Christiano (1988) shows that RBC
models with aggregate inventories cannot explain the volatility and procyclicality of inventory
investment without including a more complex information structure and restrictions on the
timing of agents’ decisions. Moreover, Christiano and Fitzgerald (1989) conclude, “the study of
aggregate phenomena can safely abstract from inventory speculation.” Nevertheless, the recent
empirical literature continues to affirm the conventional view of inventories as propagating
business cycle fluctuations. For example, McConnell and Perez-Quiros (2000), among others,
argue that structural changes in inventory behavior are an important reason for the decline in
the volatility of U.S. GDP since the early 1980s.

We reexamine the role of inventories in business cycle fluctuations by developing and estimat-
ing a dynamic stochastic general equilibrium (DSGE) model rich enough to explain essential
elements of inventory behavior. To confront the data, the model requires four extensions over
existing models with inventories: (1) two sectors, goods and services, differentiated by whether
they hold inventories; (2) a disaggregation of inventories into two distinct types, input and
output inventories; (3) several modern DSGE features, which have been shown to be necessary
to fit the data; and (4) multiple shocks, which provide a diverse array of economically inter-
pretable sources of stochastic variation. Because these extensions increase the complexity of
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the model, we abstract from other potentially important features—variable markups, nominal
rigidities, intermediate goods with input–output relationships, and nonconvexities—that others
have incorporated in equilibrium models of inventory behavior.2

Studying inventories in an equilibrium framework motivates a natural sectoral decomposi-
tion. Because inventories are goods mostly held by the firms that produce goods, our model
contains a goods-producing sector that holds inventories and a service-producing sector that
does not hold inventories. This inventory-based sector decomposition yields a broader goods
sector than in prior studies that distinguished goods from services because the model in-
cludes in the good sector also industries that distribute goods (wholesale and retail trade plus
utilities).3

Our model disaggregates inventories into input (materials and work-in-progress) and out-
put (finished goods) stocks, as suggested by the stage-of-fabrication approach employed in
Humphreys, Maccini, and Schuh (2001) in a partial equilibrium model.4 This distinction is
strongly supported by the data because the cyclical properties of input and output inventories
differ. We define output inventories (F) as stocks held by retailers for final sale; all other stocks
are input inventories (M). By these definitions, input inventories empirically are more volatile
and procyclical than output inventories. Perhaps more importantly, the ratios of each inventory
type to its steady-state target exhibit very different cyclical behavior. Relative to output of
goods, input inventories (M/Yg) are very countercyclical. However, we find that relative to the
consumption of goods, output inventories (F/Cg) are mildly procyclical.

In our model setup, we motivate the holding of input and output inventories differently. Input
inventories enter as a factor in the production of value added, but only in the goods-producing
sector. Holding input inventories is assumed to facilitate production by minimizing resource
costs involved in procuring input materials, guarding against stockouts, and allowing for batch
production. This approach follows the tradition of earlier DSGE models, such as Kydland and
Prescott (1982) and Christiano (1988), as well as the work of Ramey (1989).

Output inventories pose a different specification challenge. Much of the earlier inventory
literature deals with partial-equilibrium analyses of the inventory-holding problem. Typically,
a firm is assumed either to hold output inventories to avoid lost sales or stockouts (Kahn, 1987)
or to “facilitate” sales (Bils and Kahn, 2000). Following Kahn, McConnell, and Perez-Quiros
(2002), we assume that output inventories provide a convenience yield to the consumer and
enter the consumers’ utility function directly. The convenience yield may reflect the reduction
in shopping cost associated, for instance, with less frequent stockouts and with the provision of
variety or of other consumer benefits associated with the underlying retailing services. Indeed,
under some simplifying assumptions, we can show that the model with output inventories in the
utility function is equivalent to a model in which inventories appear in the budget constraint
because they affect shopping costs, but do not enter the utility function.5

We acknowledge that our modeling shortcuts are taken in order to obtain a relatively simple,
estimable model. Moving forward, it will be important to take to the data inventory models with

2 Papers that incorporate variable markups include Bils and Kahn (2000), Hornstein and Sarte (2001), Boileau and
Letendre (2009), Coen-Pirani (2004), Jung and Yun (2006), and Chang et al. (2009). General equilibrium models
with intermediate goods and supply-chain relationships include Huang and Liu (2001) and Wen (2005a). Fisher and
Hornstein (2000) and Khan and Thomas (2007) study (S,s) policies for retail inventories and intermediate goods
inventories, respectively, whereas Wen (2009) develops a model of inventories based on a precautionary stockout-
avoidance motive.

3 Marquis and Trehan (2005a) define goods as manufacturing firms, whereas Lee and Wolpin (2006) use the National
Income and Product Accounts (NIPA) definition (agriculture, mining, construction, and manufacturing). For multi-
sector consumption/investment models, see Greenwood et al. (2000), Whelan (2003), and Marquis and Trehan (2005b).

4 The importance of stage-of-fabrication inventories dates back to Lovell (1961) and Feldstein and Auerbach (1976).
More recent models include Husted and Kollintzas (1987), Bivin (1993), Ramey (1989), and Rossana (1990). Cooper
and Haltiwanger (1990) and Maccini and Pagan (2007) examine the linkages between firms created through inventories
playing different input and output roles in production.

5 The argument follows Feenstra (1986), who discusses the functional equivalence of including money in the utility
function or liquidity costs in the budget constraint.
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different and arguably deeper microfoundations for inventory demand. Fisher and Hornstein
(2000), for instance, develop a dynamic general equilibrium model with retail inventories and
fixed ordering costs that generate (S,s) policies for inventory demand. Khan and Thomas (2007)
also rely on ordering costs to motivate inventories and find that a version of the model driven by a
single technology shock can reproduce the cyclical properties exhibited by total inventories. Wen
(2009) develops, instead, a model of input and output inventories where firms hold inventories
because of a stock-out avoidance motive and production lags in the face of idiosyncratic demand
and technology shocks and he shows that his model can match important features of the data.
However, we believe that the estimation—as opposed to calibration, as in the papers above—of
a simple model such as ours is a useful contribution. To the best of our knowledge, in fact, all
estimated modern DSGE models have ignored inventories, either by leaving them out of the
model or subsuming them within other forms of capital. Our estimation approach delivers some
new insights into the dynamics of inventories and into their role in business cycle fluctuations,
and, to that extent, it leaves one hopeful that further progress can be made in taking even more
richly specified models to the data.

Our setup includes several important features now standard in estimated DSGE models,
such as adjustment costs on all capital stocks (including inventories) and variable utilization of
capital. We also allow for nonzero inventory depreciation (or, equivalently, an inventory holding
cost that is proportional to the total stock). This is a relatively novel feature in the inventory
literature, except in models of inventories with highly perishable goods (Pindyck, 1994). We
allow nonzero depreciation because it is theoretically plausible and essential to fit the data. The
model incorporates six shocks. We include two (correlated) sector-specific technology shocks
and one demand-type shock to the discount rate. A fourth shock captures shifts in preferences
between goods and services. Finally, we introduce two inventory-specific shocks that create
roles for unobserved changes in inventory technologies or preferences to influence the model.
Although multiple shocks are not common in general equilibrium models of inventory behavior,
we find it appealing to work with both technology and preference shocks on the one hand and
inventory shocks on the other, because our interest is not just in understanding how inventories
propagate aggregate shocks but also in whether shocks that affect inventories more directly
spill over to other sectors of the economy.

We estimate the model using Bayesian methods. The estimated model fits the data well.
Parameter estimates are consistent with the theory and are relatively precise. The estimated
model replicates the volatility and procyclicality of inventory investment and the qualitative
differences in the observed cyclicality of the two inventory to target ratios. In particular, the
model captures the countercyclicality of the input inventory to output ratio and the relatively
acyclicality of the output inventory to consumption ratio. We also find that inventory shocks
do explain some of the variation in investment and consumption, but little of the variation
in aggregate output. Input inventory shocks (that increase the contribution of inventories to
production) reduce inventory demand and raise business investment and, with some delay,
total output. Output inventory shocks instead move preferences away from output inventories
and towards consumption goods, thus proxying for a classic demand shock. However, the
effects on the aggregate economy are not large. Altogether, the results are consistent with the
conventional view that inventories are an important part of the propagation mechanism, but in
and of themselves are not an important source of macroeconomic fluctuations.

The estimation results shed light on inventory behavior over the business cycle. We find that
the elasticity of substitution between input inventories and fixed capital in the production func-
tion is much smaller than unity. In contrast, the elasticity of substitution between consumption
and output inventories in the utility function is closer to unity. Adjustment costs on fixed capital
are large, whereas adjustment costs on inventory stocks are small and relatively insignificant.
However, estimated depreciation rates for inventories, which might also reflect holding costs,
are sizable. Nonzero depreciation rates for inventories, together with fixed capital adjustment
costs, are crucial in explaining the absolute and relative volatility of inventory investment and
their role in the propagation mechanism.
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Finally, we provide the first analysis of the Great Moderation based on an estimated DSGE
model with independent roles for input and output inventories. By estimating the model over
the subperiods 1960–83 and 1984–2007, we account for the notable changes in the steady-state
values of the inventory-to-target ratios and for the relatively greater importance of the service
sector since 1984. We find that most of the decline in aggregate output volatility is attributable
to the lower volatility of shocks, which occurred primarily in the goods-sector technology
shock.6 The volatility of the input-inventory technology shock also declined, but this decline
only accounts for a very small reduction in the volatility of aggregate output or goods output.
We also find that structural changes in the parameters account for a smaller fraction of the
reduction in aggregate output volatility. The reduced ratio of input inventories to goods output
observed in the data is associated with a decrease in goods-sector output and GDP volatility,
but the size of the decrease is small.

2. THE MODEL

2.1. Motivating Inventories. To motivate why input inventories (materials for short) are
held, we follow the literature that treats them as a factor of production alongside labor and fixed
capital, following a tradition going back to Kydland and Prescott (1982), Christiano (1988), and
Ramey (1989). This approach assumes that the stock of inventories facilitates production—
over and above their usage—by minimizing the cost of procuring input materials, by guarding
against stockouts that would reduce productivity, and by allowing batch production.7 In the
Kydland and Prescott and Christiano models, the production function should be interpreted
as a value added (gross output minus materials used) production function. As a factor aiding
the production of value added, one can think of inventory stocks as a type of capital, which
are characterized by adjustment and holding costs and subject to physical depreciation.8 In
Section 6, we also consider a version of the model in which we explicitly model the usage of
materials and abstract from their convenience yield.

In modeling output inventories, we follow Kahn et al. (2002), who assume that output inven-
tories provide convenience services to the consumer and include them directly in the utility func-
tion. The convenience yield may reflect the reduction in shopping cost associated, for instance,
with less frequent stockouts and with the provision of variety or of other consumer benefits
associated with the underlying retailing services. Indeed, under some simplifying assumptions,
we can show that the model with output inventories in the utility function is equivalent to a
model in which inventories appear in the budget constraint because they affect shopping costs,
but do not enter the utility function. Feenstra (1986) proves the equivalence, under some (mild)
conditions, between including consumption and money in the utility function and including only
consumption, but with liquidity/shopping costs—increasing in consumption and decreasing in
money balances—appearing in the budget constraint. Feenstra’s result suggests that our model
with output inventories in the utility function could be reinterpreted as a model having only
consumption in the utility function, but having shopping costs in the budget constraint that are
decreasing in output inventories. When the utility function is additively separable in consump-
tion of goods and output inventories, on the one hand, and consumption of services, on the

6 This result is consistent with other aggregate analyses of the Great Moderation. See the VAR-based analyses
of Blanchard and Simon (2001), Stock and Watson (2003), and Ahmed et al. (2004). See also Khan and Thomas
(2007) and Maccini and Pagan (2007) for analyses based on structural models with inventories. Arias et al. (2006)
use a calibrated RBC model without inventories, and Leduc and Sill (2006) use an equilibrium model to assess the
quantitative importance of monetary policy.

7 Humphreys et al. (2001) and Maccini and Pagan (2007) argue that it is important to model the delivery and usage
of input materials in gross production together with the holding of input inventories. However, absent input–output
(supply-chain) relationships among firms, a representative-firm approach cannot admit deliveries of raw materials
produced by an upstream supplier.

8 If holding costs are proportional to the stock, then the inventory depreciation rate will include both physical wastage
and the resource cost of holding inventories. Inventory carrying costs have a long history in the operations management
literature. See for instance the book by Stock and Lambert (2001).
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other, we can derive analytically the form of the shopping cost function. We discuss all this
more fully in Section 6.

Our representative agent, perfectly competitive approach to output inventories abstracts
from the decentralized problem of inventory holding by retailers (or by final good producers)
that is common in partial-equilibrium analyses of inventories. To address this issue properly,
one should model explicitly the relationship between individual consumers and retailers (or final
good producers) in an imperfectly competitive setting. We leave this important task for future
research in the context of a model that also allows for input–output (supply-chain) relationships,
which are equally important to the decentralized problem. We also avoid modeling stockouts of
output or input inventories explicitly and abstract from the presence of fixed ordering costs. We
are aware that our modeling choices for both input and output inventories are shortcuts taken
in order to obtain a relatively simple estimable model. The judgment whether they are useful
ones will partly depend upon the ability of our model to explain the movement of inventories
over the business cycle.

2.2. Preferences. The household chooses consumption of goods Cg, services Cs, output
inventories F, and hours in the goods sector Lg and services sector Ls to maximize the following
objective function:

E0

∞∑
t=0

βt(εβt
(

log
(
γεγtX

−φ
t + (1 − γεγt)C−φ

st

)−1/φ − τ(Lgt + Lst)
))

,

where Xt is a CES bundle of goods and output inventories and is defined as

Xt = (
αεFtC

−μ
gt + (1 − αεFt)F −μ

t−1

)−1/μ
(1)

where

0 < γ < 1, 0 < α < 1, and μ ≥ −1.

In this formulation, 1 + μ is the inverse elasticity of substitution between the consumption
of final goods and output inventories. Similarly, 1 + φ is the inverse elasticity of substitution
between services and the bundle of goods (consumption-output inventories). Utility is linear in
leisure, following Hansen (1985) and Rogerson (1988), which both assume that the economy
is populated by a large number of identical households that agree on an efficient contract that
allocates individuals either to full-time work or to zero hours.

We allow for three shocks to impact the intertemporal and intratemporal margins of the
household. The shock εβt affects preferences for goods, services, and leisure today versus to-
morrow. The shock εγt affects the relative preference between goods and services.9 Finally,
the shock εFt affects the preference between the consumption of goods and output inventories:
This shock is meant to capture the reduced-form impact on utility of temporary movements
in the “technology” to produce output inventories occurring in the storage of physical goods.
Low-frequency evolution in the storage and retailing technology (such as the emergence of
megastores like Walmart, Internet shopping, and other key retail developments, especially
since the early 1980s) might also be reflected in changes in structural parameters such as α and
μ or in the volatility of the inventory specific shock εFt. Changes in α and μ will affect the ratio
between output inventories and consumption. It is difficult to explicitly model these trends, but,
at least, we will allow for discrete changes in the parameters by estimating the model separately
for different subperiods (pre- and post-1984).

9 For the model to admit a solution, a necessary condition is that γεγt never exceed unity for each possible realization
of εγt . Even though we assume that log εγt has an unbounded support, empirically its standard deviation turns out to be
rather small, so that this condition is always satisfied in practice.
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2.3. Technology. Following Christiano (1988), value added in the goods sector is a Cobb–
Douglas function in labor, Lgt, and a CES aggregate of services from fixed capital and input
inventories,

Ygt = (AgtLgt)1−θg (σ(zgtKgt−1)−ν + (1 − σ)(εMtMt−1)−ν)−θg/ν,(2)

where

0 < σ < 1 and ν ≥ −1.

In Equation (2), Kgt−1 is the end-of-period t − 1 capital in the goods sector (plant, equipment,
and structures), zgt is the time-varying utilization rate of Kgt−1, and Mt−1 is the end-of-period
t − 1 stock of input inventories. Here, 1 + ν measures the inverse elasticity of substitution
between fixed capital and input inventories. If ν > 0, then fixed capital and input inventories will
be defined here as complements; if −1 ≤ ν ≤ 0, then input inventories and capital are substitutes.

The production function above does not explicitly feature the usage of materials as one
of its arguments. Equation (2) describes a value added (gross output minus materials used)
production function, once materials used have been maximized out. So long as materials can
be produced from gross output using a one-for-one technology, our model generates the same
optimality conditions for primary inputs as a model that treats materials used as an additional
factor of production in the production function of gross output.10

We allow for two disturbances in the goods sector technology: Agt is a technology shock,
whereas εMt is a shock that affects the productive efficiency of input inventories, so that εMtMt−1

is input inventories in efficiency units. εMt captures, in a reduced-form way, the impact on pro-
duction efficiency of changes in the input inventory technology. The (low frequency) evolution
over time of new methods of inventory management like just-in-time production or flexible
manufacturing system, which are characterized by elaborate supply and distribution chains,
may be reflected in changes in the volatility of εMt, in the weight of input inventories in the
CES aggregate, 1 − σ, and in the parameter governing the elasticity of substitution, ν, or, more
generally, in the ratio between the stock of input inventories and goods output.

Production in the services sector is modeled by a Cobb–Douglas production function only
for labor Lst and capital services:

Yst = (AstLst)1−θs (zstKst−1)θs,(3)

where Kst−1 is the end-of-period t − 1 capital in the service sector and zst is the time-varying
utilization rate of Kst−1. The empirical fact that service-producing firms do not hold inventories
motivates our model’s different specification of the services-production technology. We also
allow for a technology disturbance, Ast, in the services sector.

2.4. Resource Constraints. Output from the goods sector provides consumption goods,
new fixed investment in both sectors, and investment in output and input inventories. Output
from the services sector provides services to the consumer. The resource constraints for the
goods and service sectors are, respectively,

Ygt = Cgt + Kgt − (1 − δKg(zgt))Kgt−1 + Kst − (1 − δKs(zst))Kst−1 + Ft − (1 − δF )Ft−1

+ Mt − (1 − δM)Mt−1 + ξKg(Kgt, Kgt−1) + ξKs(Kst, Kst−1) + ξF (Ft, Ft−1) + ξM(Mt, Mt−1)

(4)

10 We are assuming here absence of delivery lags or time to build considerations. As pointed out by one referee,
delivery lags or time-to-build delays would invalidate this result.
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and

Yst = Cst.(5)

The capital depreciation rates in both sectors, δKg(zgt) and δKs(zgt), are increasing functions
of the respective utilization rates. The inventory depreciation rates, δF and δM, are fixed and
possibly capture inventory holding costs as well. Adjustment costs (denoted by ξ) are quadratic
and given by the expression

ξt = ψ

2δ

(
t − t−1

t−1

)2

t−1(6)

for t = (Kgt, Kst, Mt, Ft). It is straightforward to show, log-linearizing around the steady state,
that the elasticity of capital (investment) with respect to its shadow price is δ/ψ (1/ψ). For
the utilization function, we choose a parameterization such that the marginal cost of utilization
equals the marginal product of capital in steady state. The time t depreciation rate of Kit, defined
as δKit (with i = g, s), is given by

δKit = δKi + bKiζKiz2
Kit/2 + bKi(1 − ζKi)zKit + bKi(ζKi/2 − 1).(7)

The parameter ζKi > 0 determines the curvature of the capital-utilization function, where bKi =
1/β − (1 − δKi) is a normalization that guarantees that steady-state utilization is unity.

2.5. Shocks. The shocks Agt, εβt, εFt, εγt, εMt, and Ast, follow AR(1) stationary processes in
logs:

ln(Agt) = ρg ln(Agt−1) + (
1 − ρ2

g

)1/2
ugt(8)

ln(εβt) = ρβ ln(εβt−1) + (
1 − ρ2

β

)1/2
uβt(9)

ln(εFt) = ρF ln(εFt−1) + (
1 − ρ2

F

)1/2
uFt(10)

ln(εγt) = ργ ln(εγt−1) + (
1 − ρ2

γ

)1/2
uγt(11)

ln(εMt) = ρM ln(εMt−1) + (
1 − ρ2

M

)1/2
uMt(12)

ln(Ast) = ρs ln(Ast−1) + (
1 − ρ2

s

)1/2
ust.(13)

The innovations ugt, uβt, uFt, uγt, uMt, and ust are serially uncorrelated, with zero means and
standard deviations given by σg, σβ, σF , σγ , σM, and σs. In addition, we allow for correlation
between the two technology innovations, ugt and ust.

2.6. Optimality Conditions and Steady State. Because the two welfare theorems apply, we
solve the model as a planner’s problem. The model’s optimality conditions,11 together with the
market-clearing conditions and the laws of motion for the shocks, can be used to obtain a linear
approximation around the steady state for the decision rules of the model variables, given the
initial conditions and the realizations of the shocks. Given the model’s structural parameters,
the solution takes the form of a state-space econometric model that links the behavior of the

11 The first-order conditions are standard and reported in the technical appendix, along with a full characterization
of the steady state.



1186 IACOVIELLO, SCHIANTARELLI, AND SCHUH

endogenous variables to a vector of partially unobservable state variables that includes the six
autoregressive shocks.

In our econometric application, we use observed deviations from the steady state of six
variables, namely, the output of goods and services, the stock of input inventories and output
inventories, the relative price of goods, and total fixed investment to estimate the model’s pa-
rameters and the properties of the shocks. We will also require that the estimated parameters
match the steady-state ratios of the model (proxied by their average values). Before describ-
ing the estimation procedure (Section 4), Section 3 maps the model variables into their data
counterparts.

2.7. Inventory Management Techniques and Steady-State Ratios. Two of the model’s
steady-state ratios are worth highlighting. The steady-state ratios of input inventories to goods
output, M/Yg, and output inventories to goods consumption, F/Cg, are

M/Yg = θg(1 − σ)
1 − β(1 − δM)

β

(1 − σ) + σ

(
σ

1 − σ

1 − β(1 − δM)
1 − β(1 − δKg)

)− ν
1+ν

(14)

F/Cg =
(

α

1 − α

1 − β (1 − δF )
β

)− 1
1+μ

.(15)

These ratios are structural analogues of the reduced-form “inventory–target” ratios that have
played a central role in the inventory literature, which has usually taken a partial equilibrium
approach to modeling inventories. The literature has primarily focused on output inventories,
F, and Cg is normally represented as the “sales” of a firm(s)—hence the “inventory–sales” ratio
or target.

Changes in inventory–target ratios figure prominently in analyses of the data and hypotheses
about improvements in inventory management techniques, as explained in the next section.
Here we simply highlight the ways such techniques might be manifested through the theoretical
model. Because the model does not explicitly incorporate inventory management techniques,
changes in such techniques mostly likely would appear as changes in the structural parameters
that determine the inventory–target ratios.

The input inventory–target ratio, M/Yg, depends on three production function parameters
that might reflect the current state of inventory management (σ, ν, θg), as well as two depreciation
rates (δM, δKg ). The ratio is increasing in the relative weight of inventories in the nonlabor
input to production (1 − σ) and in the nonlabor share of inputs in production (θg). Thus,
new production techniques that economize on inventories, such as changes in delivery lags or
ordering procedures for material inputs, may contribute to a lower ratio. The target ratio is also
likely to be increasing in the degree of complementarity between inventories and fixed capital
(ν).12 Investment in new types of capital associated with inventory management techniques
might reduce this complementarity. Finally, the ratio is decreasing in inventory depreciation, δM,
although this parameter is unlikely to be directly related to inventory management techniques.

The output inventory–target ratio, F/Cg, depends on two utility function parameters (α, μ)
and one depreciation rate (δF). The ratio is increasing in the relative weight of inventories in
the goods aggregator 1 − α. It is also increasing in the degree of complementarity between
consumption and inventories (μ) when the term in parentheses in Equation (15) is greater than
one—a result that holds in our baseline estimates.13

12 This will be true if the term in the larger parenthesis in the denominator is greater than one, which is almost
certainly the case in practice because capital has a much larger weight in production.

13 The papers by Kimura and Shiotani (2009) and Maccini and Pagan (2007) interpret changes in inventory–target
ratios as evidence of changes in inventory management techniques, and attempt to map these techniques into particular
parameters of a linear-quadratic inventory model.
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TABLE 1
SECTOR DEFINITIONS AND OUTPUT SHARES

NOTES: FIREL denotes Finance, Insurance, Real Estate, and Leasing.

3. DATA

3.1. Sector and Inventory Definitions. To obtain model-consistent data, we divide the econ-
omy into two sectors according to the inventory-holding behavior of their industries: (1) the
“goods” sector, which holds inventories and (2) the “services” sector, which does not hold in-
ventories (at least none as measured by statistical agencies).14 The goods sector includes seven
industries: agriculture, mining, utilities, construction, manufacturing, and wholesale and retail
trade. All other private-sector industries are in the services sector.15

Table 1 depicts our sectoral classification, compares it with the NIPA classification, and
reports output shares in 2000. The goods sector accounts for a larger share of output than the
NIPA goods sector (35.9% vs. 21.2%). Nevertheless, under our definition, the services sector
accounts for about three fifths of private output (59.1% vs. 40.9% for private goods), which
excludes government but includes foreign trade. However, the private goods sector becomes
even larger after adjusting for foreign trade and the leasing of capital, as explained in the next
subsection.

Our goods sector is larger than the NIPA good sector (and larger than conventional wisdom
would suggest) because it includes the utilities, wholesale trade, and retail trade industries—all
of which hold measured inventories. Reclassification of these NIPA-based “services” (utilities
and trade) as “goods” can be motivated by assuming that the “service” provided—distributing
goods from their producers to the final destination (consumers or firms)—can be internalized
in a model of a representative goods producer that makes and distributes goods. Nevertheless,
separate treatment of the production and distribution of goods may be preferable in future
research that incorporates multiple stages of processing in the goods sector.

NIPA inventories are classified as input (M) or output (F) stocks following the stage-of-
fabrication perspective advanced by Humphreys et al. (2001). Generally speaking, most goods
production follows an input–output structure in which the output of one industry becomes
an input to the next industry situated along a supply or distribution chain—raw materials,
then work-in-process, and finally finished goods. Table 2 depicts this inventory classification

14 Given our reliance on inventory holding as the defining characteristic of sectors, we could label the sectors
“inventory holding” and “noninventory holding,” but we opted for “goods” and “services” because this nomenclature
is simpler and more traditional.

15 See the technical appendix for details on data sources, variable definitions, and data construction.
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TABLE 2
INVENTORY STOCK DEFINITIONS AND SHARES

scheme by industry, along with inventory shares in 2000. Inventory-holding industries appear
in approximate order according to their location in the stages of fabrication; industries tending
to producing raw materials are listed first, and industries tending to producing finished goods
are listed last.

Prior research focuses on stage-of-fabrication inventories only within manufacturing. How-
ever, manufacturing only accounts for 31% of all inventories, so a decision must be made on
how to classify the remaining 69%. We define F as retail inventories because they represent
the most finished stage of goods in supply and distribution chains. By this definition, output
inventories account for about one fourth of all stocks (26.6%); hence input inventories account
for the about three fourths (73.4%).16

Our empirical definition of F yields a smaller role for output inventories than they play
within manufacturing. Within manufacturing, output (finished goods) inventories account for
about 36% of all manufacturing inventories (11.1% out of 31.1%). In addition, our empirical
definition of input inventories is heavily oriented toward work-in-process inventories (54.5%),
whereas these types of inventories account for only about 29% of all manufacturing stocks
(8.9% out of 31.1%). Thus, one should not necessarily expect the stylized facts for stage-of-
fabrication inventories in our model to be the same as for stage-of-fabrication inventories in
manufacturing.

3.2. Data Construction. We use NIPA data and identities to construct data for the econo-
metric work. For simplicity, we suppress the notational details associated with chain-weighted
aggregation in the equations below describing the data construction.17 The output and invest-
ment data are constructed as follows:

Ydata
g = Cg + Ig + Is + �F + �M

Ys = Cs

16 A reasonable case can be made for output inventories to include manufacturing finished goods and perhaps
wholesale inventories. However, no clear theoretical (or empirical) justification exists for any particular alternative
classification. For instance, wholesale inventories include construction material supplies, and manufacturing-output
inventories contain goods that do not enter the consumer’s utility function. Moreover, each industry’s inventory
investment exhibits different cyclical and trend characteristics, and the correlation of inventory investment between
industries is low.

17 All real data are in chain-weighted 2000 dollars. When constructing the actual real chain-weighted data, we use
the Tornquist index approximation to the Fisher ideal chain index as recommended by Whelan (2002).
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Ig = ω(In + NX)

Is = (1 − ω)(In + NX) + Ir,

where In is nonresidential fixed investment, Ir is residential fixed investment, NX is net exports,
and ω is the share of capital installed in the goods sector; NIPA data on Cg and Cs are modified
slightly to match the sectoral definitions of the model. In estimating the model we account
for the fact that NIPA output does not include inventory depreciation, whereas model output
does: We thus subtract inventory depreciation from model output of goods, Yg, in order to
obtain measured goods output, Ydata

g . GDP is the Tornqvist index of measured output in the
two sectors.

All data represent value added (“output” for short) of the private economy, which excludes
government spending. We include net exports as part of investment in order to match objects
in the our closed economy model with the data that refer to an open economy, following
the suggestion of Cooley and Prescott (1995), the approach of Hayashi and Prescott (2002),
and Conesa et al. (2007), among others.18 Another advantage of including net exports in our
definition of output is that our sample includes a period in which the U.S. moved from being
a net exporter (before 1984) to running a significant trade deficit (since 1984): Omitting net
exports from our definition of goods could significantly bias our assessment of the trends in the
inventory–output ratios.

Because the model and NIPA sectoral definitions differ, the standard NIPA consumption,
investment, and inventory data require three adjustments to obtain model-consistent variables.
First, consumption of energy services (such as gas and electricity) is reclassified as consumption
of goods (energy) produced by the utilities industry. Second, non-NIPA investment-by-industry
data are used to obtain measures of investment (capital installed) in each sector, which is not
available in the NIPA data. A substantial proportion of investment occurs in the “real estate,
rental and leasing” industry, which is in the services sector, but much of this capital actually
is leased back to the goods sector. Thus, a portion of real estate and leasing investment is
reclassified as goods investment. And third, inventory data from two industrial classification
schemes—the old SIC system and the newer NAICS system—are spliced to obtain consistent
time-series data for the entire sample.

3.3. Output and Investment Data. Figure 1 plots the raw data in real terms (normalized
to 100 in 1960). As the figure illustrates, the series have grown at different real rates over the
sample period. In particular, output in the services sector has grown faster than in the goods
sector, and input inventories have grown much slower than output inventories, especially since
the early 1980s. Figure 2 plots each variable in nominal terms as a share of total output.
The ratios of total consumption-to-output and total investment-to-output are roughly constant,
except for the slight downward trend in the investment-to-output ratio during the second half
of the sample due to the decline in net exports.

However, the nominal ratios in each sector are not roughly constant.19 The most noticeable
sector-level trends are the opposing trends in consumption (an upward drift in the share of ser-
vices consumption, from 30% to 50%, and a downward drift in the share of goods consumption
of the reverse magnitude) and the different trends in inventory stocks (downward drift in the
ratio of input inventories and upward drift in the ratio of output inventories). Similarly, the ratio
of investment to output in goods is declining whereas that ratio in services is roughly constant.

18 Our approach is particularly close to Hayashi and Prescott (2002). As discussed in Conesa et al. (2007), all solutions
to the problem of matching a closed economy model with the data have a degree of arbitrariness. In a previous version
of the article, imports were included in consumption and investment, but exports were omitted as a component of
demand. As one referee pointed out, this may lead to misleading conclusions on the behavior of the input inventory to
output ratio. Fortunately, our conclusions concerning the qualitative behavior of this ratio, as well as the quantitative
findings of the model, are not sensitive to this choice.

19 In real terms, the ratio of investment to output has trended upwards during the sample. However, the relative price
of investment has fallen, so the nominal ratio of output to investment has remained approximately constant.
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FIGURE 1

DATA BY SECTOR

These changing shares of goods and services have been extensively discussed in the literature
and reflect the slow reallocation of resources from manufacturing to services, a process often
referred to as “structural change” and well documented at least since Kuznets (1957).

The sector-level trends in the data pose a challenge in terms of modeling choices. Standard
one-sector models of the business cycle rely on an important property of U.S. macroeconomic
aggregates: The nominal shares of total consumption and investment in total GDP have been
roughly constant over the post-World-War II period. The plain-vanilla one-sector model, in-
deed, features “balanced growth”: Output, consumption, and investment all grow at about the
same rate, and the decentralized equilibrium features constant relative prices across output,
consumption, and investment (Whelan, 2003). Extensions of the one-sector model to a multi-
sector framework allow for balanced growth even if the real variables are growing at different
rates over time, so long as preferences and technology satisfy specific functional forms.20 In
these extensions, although there is no balanced growth in the traditional sense, it is possible to
find a transformation of the model variables that will render them stationary. This transforma-
tion, loosely speaking, is admissible insofar as variables grow at different rates in real terms,
but relative prices adjust in a way that expenditure shares remain constant. Hence a necessary
condition for balanced growth both in one-sector and multisector models is that nominal ra-
tios are approximately constant over time. Our framework, however, features a finer level of

20 Kongsamut et al. (2001) and Gomme and Rupert (2007) discuss the restrictions on preferences and technology
that are required for balanced growth in multisector models. These restrictions call for production functions and
consumption aggregators to be Cobb–Douglas.
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FIGURE 2

NOMINAL SHARES OF TOTAL OUTPUT

disaggregation than typical multisector models. In particular, it divides consumption into two
categories (goods and services) and investment into three categories (business investment, input
inventory investment, and output inventory investment). The discipline of a model obeying the
balanced growth property would require the shares of Figure 2 to be stationary, but they are
not. Jointly modeling of the trend and the cycle would be fascinating, but the data appear to
reject balanced growth at the level of disaggregation that we propose in the model. Thus, we
use standard filtering techniques to remove the trends from each variable prior to estimation.

3.4. Inventory Data and the Inventory Management Hypotheses. Figure 3 (top panel)
plots the inventory–target ratios of the model, F/Cg and M/Yg.21 A striking fact is that input and
output inventory–target ratios exhibit opposite trends over the full sample. The input inventory
ratio (M/Yg) declined by about one third (from about 1.5 to 1.0) and the output inventory ratio
(F/Cg) increased by 50% (from about 0.35 to 0.5). Because input inventories account for most
of the inventory stock (73.4%, from Table 2), the aggregate inventory–target ratio, (M + F)/Yg

(or relative to Cg), declined.

21 Although M/Yg is consistent with traditional practice in the inventory literature, such as Lovell (1961) and Feldstein
and Auerbach (1976), F/Cg differs from the traditional inventory-to-sales ratio specified by microeconomic models of
the firm. In the model, the “sales” measure most analogous to that used in the inventory literature is final goods sales,
Sg = Cg + I. Empirically, however, the choice of the scale variable for inventories does not alter the qualitative
properties of inventory-target ratios.
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FIGURE 3

INVENTORY–TARGET RATIOS AND INVENTORY INVESTMENT

The prevailing view in the literature is that a decline in (M + F)/Yg or M/Yg likely resulted
from improvements in inventory management and production techniques, such as “Just-in-
Time” production, “Flexible Manufacturing Systems,” and “Material Resources Planning.”22

Ramey and Vine (2004) rightly point out the importance of measuring inventory–target ratios
with numerator (inventory) and denominator (target) measuring the same sectors of the econ-
omy (which our model does), but conclude that doing so yields trends less supportive of the
conventional view. Alternatively, holding fewer inventories relative to sales would be possible
if the volatility of demand declined, as predicted by stockout avoidance models such as Kahn
(1987). Because the decline in the input inventory–target ratio occurred at about the same
time that GDP volatility declined—the “Great Moderation”—a connection between these two
events is a natural hypothesis to evaluate.

In contrast, the literature offers little or no explanation for a rising inventory–target ratio,
such as output (retail) inventories rising relative to their target (F/Cg). Perhaps this oversight
occurred because inventories in the retail industry are not examined much in the literature,
but for some reason much less attention has been devoted to explaining this phenomenon
and its implications for the aggregate economy. By separating inventories into input and output

22 For examples, see McConnell and Perez-Quiros (2000), Blanchard and Simon (2001), Humphreys et al. (2001),
Kahn et al. (2002), Kahn and McConnell (2005), Maccini and Pagan (2007), Davis and Kahn (2008), and Kimura and
Shiotani (2009). Many authors note that the decline in the inventory–target ratio centers on durable goods manufacturing
in the 1980s, when most new technologies were adopted.
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components, we highlight the need to understand the economic factors behind the trend increase
in output inventories. The output inventory–target ratio leveled off in the 1990s, much later
than the break for the input inventory–target ratio. This fact may reflect an effect of inventory
management occurring later than for input inventories, but the evidence for this hypothesis is
less clear and warrants additional investigation. Finally, a rising output inventory–target ratio
may be consistent with a love-for-variety story, in which firms are required to keep a larger,
more diverse stock of finished goods to satisfy greater demand for variety coming from an
increase in the number of types of goods produced.

3.5. Cyclical Properties. For all of the reasons described earlier about the complexity of the
sectoral trends, and following the common procedure in the inventory literature, we detrended
all data used in the econometric work with a conventional bandpass filter.23 By all measures,
output in the goods sector is much more variable than output in the service sector. For our
definition of the goods sector (first column of Table 1), output fluctuations in the goods sector
account for 76% of the variance of aggregate output in real terms. By comparison, the growth
rate of goods output in the narrower, more volatile NIPA definition of goods (second column of
Table 1, not including the construction industry) accounts for 89% of the variance of real GDP
growth, according to Irvine and Schuh (2005b). Our goods sector accounts for less of aggregate
output variance because it includes relatively less volatile industries, such as wholesale and
retail trade.

Moving to inventories, the middle panel of Figure 3 shows how inventory–target ratios
exhibit markedly different cyclical properties. On average, the output-inventory ratio is roughly
acyclical (the correlation with goods output is 0.10), as can be seen by the lack of consistent
movement during recessions (shaded regions). While the output-inventory ratio shot up during
the 1973–75 recession, it has not done so during other recessions. In contrast, the input-inventory
ratio is very countercyclical (the correlation with goods output is −0.89), as can be seen by its
consistent increase during recessions. Thus, the existence of countercyclical inventory–target
ratios for manufacturing output inventories, as emphasized by Bils and Kahn (2000), is not
evident for all inventories. This result suggests that successful theories of aggregate inventory
behavior must be comprehensive enough to explain heterogenous behavior among different
types of stocks.

Another key fact, seen in the bottom panel of Figure 3, is that input-inventory investment is
much more volatile than output-inventory investment (the ratio of variances is about 2), when
both investment series are normalized by total output. This relative volatility is comparable
to the analogous variance ratios observed within manufacturing (Blinder and Maccini, 1991).
However, the relative volatility of the two types of inventory investment has declined dramati-
cally, from a ratio of 4.6 in the early sample (1960–83) to a ratio of 2.5 since then. The volatility of
input-inventory investment fell whereas the volatility of output-inventory investment remained
about constant. Both types of inventory investment are procyclical over the full sample, but
input-inventory investment is more procyclical than output-inventory investment (the corre-
lation with goods output is 0.62 for input inventories and 0.42 for output inventories). The
procyclicality of output-inventory investment decreased from 0.44 in the early sample (1960–
83) to 0.25 since then, but the cyclical correlation of input-inventory investment has remained
relatively stable.

In sum, the distinctly different cyclical properties of input- and output-inventory investment
provide additional motivation for disaggregating inventories. Thus, theoretical models that

23 A trend is removed from the variables in logs, using the bandpass filter of Baxter and King (1999) that isolates
frequencies between 3 and 32 quarters. Linear quadratic detrending and first-differencing are also common in the
literature, but these techniques tend to yield similar cyclical properties in the detrended data. Wen (2005b) shows that
the cyclical properties of detrended inventory investment are sensitive to the cyclical frequency. Business cycle frequen-
cies like ours yield procyclical inventory investment, whereas higher frequencies (2–3 quarters) yield countercyclical
inventory investment.
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allow different inventory–target adjustments and volatility across stocks are likely to have an
advantage in explaining and understanding aggregate inventory behavior.

4. MODEL ESTIMATION

4.1. Overview. We use observations on the following variables: (1) output from the goods
sector and (2) output from the service sector; (3) the stock of input inventories; (4) the stock
of output inventories; (5) total fixed investment; (6) the relative price of goods to services.
We estimate the model for the full sample from 1960:1–2007:4. We also estimate the model
for the two subperiods 1960:1–1983:4 and 1984:1–2007:4. The breakpoint corresponds to point
estimates of when the Great Moderation began, as indicated in McConnell and Perez-Quiros
(2000).

We use Bayesian techniques to estimate the structural parameters. For given values of the
parameters, the solution to our linearized model takes the form of a state-space econometric
model, and the Kalman filter enables us to evaluate the likelihood of the observable variables
as follows:

L
({xt}T

t=1 |ϒ)
,

where ϒ is the vector collecting all the model parameters and xt is the vector of observable
variables. We combine the information observed in the data with prior information on the
model parameters to construct the posterior density function:

p
(
ϒ| {xt}T

t=1

)
L

({xt}T
t=1 |ϒ)

� (ϒ) .(16)

Specifically, we first calculate the posterior mode of the parameters using a numerical optimiza-
tion procedure. Then we generate 250,000 draws from the posterior mode using the Metropolis–
Hastings algorithm to obtain the posterior distribution. The mean of the posterior distribution
is used to compute impulse response functions, variance decompositions, and moments of the
estimated model.

4.2. Prior Distributions. We keep some parameters fixed during our estimation exercise.
More specifically, we set the quarterly discount factor at 0.99, implying an annual interest rate
of 4%. We also calibrate the depreciation rates for fixed capital, which we set at δKg = δKs =
0.02.24 Once these values are set, 29 remaining parameters need to be estimated. We partition
these into three groups:

(i) The autocorrelation parameters (ρg, ρβ, ρF , ργ , ρM, ρs), standard deviations of the inno-
vation disturbances (σg, σβ, σF , σγ , σM, σs), and the correlation between the innovations
in the goods-sector technology and the services-sector technology (σg,s).

(ii) The adjustment cost parameters (ψKg, ψKs, ψF , and ψM), and the parameters character-
izing the curvature of the utilization functions for fixed capital (ζKg, ζKs).

(iii) The inventory depreciation rates (δM and δF), the elasticities of substitution (ν, φ, μ), the
labor shares (θg, θs), the weight of services in utility (γ), the weight of input inventories in
the CES capital aggregator (σ), and the weight (α) on consumption in the goods-bundle
aggregator. This third group of parameters affects not only the model’s dynamics, but also
the steady-state values of fixed capital and input- and output-inventory stocks relative to
output, as well as the relative size of the service versus the goods sector. For our sample
(and for the two subsamples), the average values of these ratios are reported in Table 3.

24 In the data, the service sector has a higher proportion of structures in its total capital stock than the goods sector
does. Because structures generally have lower depreciation rates than equipment, we also estimated a model with a
smaller depreciation rate of capital in the service sector, obtaining similar results.
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TABLE 3
TARGET STEADY-STATE RATIOS OF THE MODEL

Full Sample 1960–83 1984–2007

F/Yg 0.34 0.30 0.36
M/Yg 1.16 1.37 1.07
Kg/Yg 4.59 5.26 4.29
Ks/Yg 9.32 8.22 9.82
Y ′

s/Yg 0.81 0.54 0.88

NOTES: Output is expressed in quarterly units. The last row is the ratio
of nominal output of services over nominal output of the goods sector.
The capital output ratios are calculated from the investment-to-output
ratios, assuming depreciation rates of δKg = 0.02 and δKs = 0.02.

One can show that, for each combination of δM, δF , ν, φ, μ, it is possible to determine
a unique set of values for θg, θs, γ, σ, and α that are consistent with these five ratios.25

Accordingly, in the estimation of the model, for each value of δM, δF , ν, φ, and μ, we set
θg, θs, γ, σ, and α to the values that match the ratios. Intuitively, we let the likelihood
function use information on the behavior around the steady state of our observables to
determine values for the depreciation rates, δF and δM, and the elasticity of substitution
in the CES aggregates in the production and utility functions, ν, φ, and μ (in addition
to the autocorrelation, adjustment costs, and utilization function parameters). We then
use the ratios reported in Table 3 to recover the remaining parameters. This procedure
also enables us to account for the changes in the ratios over the sample period: When we
estimate the model separately for the two subsamples, we use the average values of the
relevant ratios in each period.26

Our prior distributions are summarized in the first three columns of Table 4. For the param-
eters measuring adjustment costs ψ , we specify a beta prior over ψ

1+ψ
, with mean equal to 0.5:

This value corresponds to a prior mean of unity for the elasticity of investment to its shadow
price. For the curvature of the utilization function, we choose a beta prior over ζ

1+ζ
with mean

equal to 0.5. For the elasticity of substitution between services and the goods bundle, between
consumption and output inventories, and between input inventories and capital, we select priors
centered around two thirds. In other words, our prior goes slightly in favor of complementarity.

The existing literature and the NIPA offer little guidance in choosing the inventory deprecia-
tion rates, δF and δM. An assumption in line with the procedures used in the NIPA would be that
inventories do not depreciate. Yet inventories are subject to various forms of “shrinkage,” such
as obsolescence, perishability, wear and tear, and breakage, in addition to incurring holding
costs, so that the depreciation parameter may well be larger than the rate set for fixed capital.
For instance, on a quarterly basis, Ramey (1989) reports inventory holding and storage costs
of 4%, whereas Khan and Thomas (2007) set these costs at 3%. We balance NIPA and other
studies and choose a prior mean for the depreciation rates equal to 0.02.

The autoregressive coefficients of the exogenous shocks have beta prior distributions, as in
Smets and Wouters (2003), centered at 0.75. The standard deviations of the shocks are assigned
a diffuse inverse gamma distribution prior. The correlation between ugt and ust is assumed to
be normal and is centered around 0.50. The choices of the mean of the prior distribution for the
standard deviation of the technology and preference shocks are in the ballpark of the findings

25 See the technical appendix for additional details.
26 Essentially, we are constructing degenerate, nonindependent priors for a set of parameters (θg, θs, γ, σ, α) with the

goal of matching five first moments of the data that are excluded from the likelihood function (that is, they are not used
as part of our estimation exercise). Put differently, these parameters can be more easily identified from steady-state
relationships among the variables instead of from the dynamics of the data. Del Negro and Schorfheide (2008) provide
and describe a more general approach for forming priors for steady-state related parameters that allows for the steady
state to be measured with error: We implicitly rule measurement error out.
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TABLE 4
PRIOR DISTRIBUTIONS AND PARAMETER ESTIMATES, FULL SAMPLE

Prior Full Sample

Mean Distribution St. dev. Mean 5% 95%

δF 0.020 beta 0.01 0.081 0.055 0.110
δM 0.020 beta 0.01 0.022 0.013 0.032
1 + μ 1.500 norm 0.5 1.30 0.88 1.74
1 + ν 1.500 norm 0.5 3.60 3.09 4.13
1 + φ 1.500 norm 0.5 1.03 1.01 1.07
ψF /(1 + ψF ) 0.500 beta 0.2 0.03 0.02 0.04
ψKg/(1 + ψKg) 0.500 beta 0.2 0.20 0.14 0.35
ψKs/(1 + ψKs) 0.500 beta 0.2 0.47 0.28 0.65
ψM/(1 + ψM) 0.500 beta 0.2 0.02 0.01 0.04
ρg 0.750 beta 0.1 0.86 0.83 0.90
ρβ 0.750 beta 0.1 0.93 0.90 0.96
ρF 0.750 beta 0.1 0.92 0.86 0.96
ργ 0.750 beta 0.1 0.86 0.80 0.91
ρM 0.750 beta 0.1 0.94 0.91 0.96
ρs 0.750 beta 0.1 0.94 0.91 0.96
ζKg/(1 + ζKg) 0.500 beta 0.2 0.95 0.89 0.99
ζKs/(1 + ζKs) 0.500 beta 0.2 0.80 0.62 0.94

σg 0.025 invg Inf 1.49% 1.29% 1.72%
σβ 0.025 invg Inf 3.80% 2.57% 5.59%
σF 0.01 invg Inf 0.33% 0.25% 0.42%
σγ 0.01 invg Inf 0.65% 0.54% 0.80%
σM 0.05 invg Inf 10.34% 8.00% 13.18%
σs 0.025 invg Inf 1.52% 1.21% 1.92%
σg,s 0.50 norm 0.25 0.72 0.65 0.78

TABLE 5
VALUES OF THE SHARE PARAMETERS IMPLIED BY THE ESTIMATION RESULTS

Full Sample 1960–83 1984–2007

α 0.9668 0.9768 0.9788
γ 0.4710 0.5686 0.4407
σ 0.9926 0.9843 0.9856
θg 0.1665 0.1934 0.1570
θs 0.3268 0.4408 0.3237

in the literature. Preliminary estimation attempts also suggested a higher standard deviation for
the input inventory shock relative to the output inventory shock.

5. ESTIMATION RESULTS

5.1. Full Sample.

Parameter estimates. We begin by discussing the estimates for the entire sample. Table 4
reports the mean and the 5th and 95th percentiles of the posterior distribution of the param-
eters obtained through the Metropolis–Hastings algorithm. Table 5 reports the implied share
parameters that match the target steady-state ratios of the model.27

27 An important issue concerns the convergence of the simulated draws from the posterior distribution of the
parameters. We fine-tune our estimation algorithm in order to obtain acceptance rates around 35% and check for
convergence using the cumulative sum of the draws statistics. While convergence typically obtains within 50,000
iterations, we set the draws to 250,000 and calculate the statistics based on the last 75% of the draws.
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TABLE 6
VARIANCE DECOMPOSITIONS OF THE MODEL, FULL SAMPLE

Full Sample

σg σβ σF σγ σM σs

Ŷg 65.9 28.4 2.1 2.3 1.3 0.001

Ŷs 1.1 0.4 0.01 26.4 0.1 72.0
Ĩ 30.3 60.5 0.1 0.3 8.9 0.0
�̃F 11.3 3.7 83.4 0.4 1.3 0.0
�̃M 12.4 21.3 0.1 0.0 66.2 0.0
Ĉg 64.6 10.8 5.6 13.4 5.6 0.01
̂GDP 66.3 26.0 1.4 0.01 0.8 5.5

NOTES: For each variable, the columns indicate the fractions of the
total variance explained by each shock. Variables with a hat are scaled
by their steady-state value. Variables with a tilde are scaled by steady-
state goods output.

All shocks are estimated to be quite persistent, with the autoregressive parameters ranging
from 0.86 to 0.94. The standard deviation of the shocks ranges from 0.33% (for the output-
inventory shock) to 10.34% (for the input-inventory shock): The quantitative relevance of each
shock will be discussed below in the variance-decomposition exercise.

The elasticity of substitution between M and K (the inverse of 1 + ν) equals 0.28. The elasticity
of substitution between F and Cg (the inverse of 1 + μ) equals 0.77, and is not significantly
different from unity. Similarly, the elasticity of substitution between services and the CES
aggregator for consumption of goods and output inventories (the inverse of 1 + φ) is close to
one.

Estimates of the inventory adjustment-cost parameters, ψF and ψM, are close to zero, whereas
the bigger values of ψKg and ψKs indicate larger adjustment costs for fixed capital. At the
posterior mean, the estimated values imply an elasticity of investment to the user cost equal to
6 in the goods sector and equal to 3.1 in the service sector.28 These different elasticities confirm
that input inventories and fixed capital are indeed distinguished by having different degrees of
adjustment costs.

Another important difference between inventories and fixed capital emerges from the esti-
mated depreciation rates. The depreciation rate for M is 2.2%, about the same as capital, but the
depreciation rate for F is 8.1%, much larger: As we will show below, the nonzero depreciation
rates are a key feature of the model in generating large and positive responses of inventories to
productivity shocks. Finally, estimates of the convexity of the utilization function suggest little
role for variable utilization in the goods sector, where input inventories enter the production
function alongside fixed capital and offer an additional margin of factor adjustment in response
to shocks. Conversely, capital utilization plays a more important role in the service sector, where
inventories do not appear in the production function.

Impulse responses and variance decompositions. Figure 4 presents the model impulse re-
sponses to the estimated shocks. In Table 6, we report asymptotic variance decompositions.
Both in Figure 4 and in Table 6, we choose an orthogonalization scheme that orders the goods
technology before the services technology shock. As a result, any variation in the responses
due to the correlation between the goods and the services shock is attributed to the goods
technology disturbance.

28 One can interpret ψ as the inverse elasticity of each type of investment to its shadow price. Our numbers are
slightly higher than microeconometric findings based on estimates of investment equations (see Chirinko, 1993).
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NOTES: Each row shows the impulse responses to an estimated one-standard-deviation shock. X-axis: Time horizon.
Y-axis: Deviation from baseline, multiplied by 100. Variables with a hat are scaled by their steady-state value. Variables
with a tilde are scaled by steady-state output in the goods sector.

FIGURE 4

IMPULSE RESPONSES OF THE ESTIMATED MODEL

The first row plots the responses to a positive goods technology shock.29 This disturbance
is fundamental in generating comovement of quantities in our model and accounts for a large
fraction of the fluctuations in economic activity. In response to the shock, consumption, business
investment, and both types of inventory investment all rise. The goods shock spills over to the
service sector (over and above the effect caused by the correlation of the shocks) because it
facilitates the production of fixed capital that is then used in the service sector. The goods
technology shock also accounts for a nonnegligible fraction of the fluctuations in both types of
inventory investment—around 11–12% of their asymptotic variance. The responses of output
and input inventory investment are, as a proportion of the respective stocks, larger than the
one for fixed investment, relative to the fixed capital stock. For instance, the impact response
of input inventories relative to business investment is two thirds as big, when both variables are
scaled by goods output. However, because the stock of business capital is about 10 times larger
than the stock of input inventories, the response of input inventories is between 6 and 7 times
larger than that of business investment, when both variables are scaled by their own steady-
state stock. This is not surprising, because fixed capital is more costly to adjust. In this sense,

29 To facilitate comparison across all investment categories, we scale the response of inventory investment and
business investment by steady-state goods output (intead of by their own steady-state values). This way, the vertical
axis measures the percentage growth contribution of each investment category to the response of goods output. Note
that in the figures and in the tables the measure of Yg is net of inventory depreciation.
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inventories are an important part of the propagation mechanism, even if inventory investment
counts for a small fraction of average output.

The second row shows the responses to a discount factor shock: This shock moves con-
sumption and investment in opposite directions, and creates negative comovement between the
output of each sector. It also contributes to fluctuations of input inventories—about 20% of the
total variance.

The third row shows responses to a shock that shifts preferences away from output inventories
towards goods consumption. The mechanics of this disturbance have the classic implications of
a demand shock. Consumption of goods increases; inventories of finished goods fall; following
the increase in demand, with a modest lag, the output of the goods sector increases whereas
output of the service sector is only marginally affected (because the estimated elasticity of
substitution implies an approximate separability in utility between goods and services). This
preference-based shock accounts for a large share (about 80%) of the variance in output-
inventory investment.

The fourth row shows the response to a shock that shifts preferences away from services and
towards goods. While this shock, which basically reflects shifts in the composition of demand,
accounts only for a small fraction of GDP fluctuations, it accounts for a quarter of the variance
of output in the service sector. It also accounts for about half of the total variance of sectoral
hours, because the shock causes a reallocation of labor from one sector to the other.

The fifth row plots the response to a positive shock to the efficiency of input inventories. This
shock captures a large fraction (about two thirds) of the variance in input-inventory investment.
More efficient management of input inventories reduces their usage, increases the demand for
fixed capital, and raises consumption (immediately) and output (with a slight delay). The shock
also accounts for around 10% of the variance of fixed investment.

The last row plots responses to a technology shock in the service sector. While it is obviously
important in explaining output of services, the effects of the shock in this sector transmit only
marginally to the rest of the economy, because the services sector does not produce capital.

The literature has often looked at the cyclical properties of the inventory–target ratios, so
Figure 5 reports the impulse responses of GDP and the inventory–target ratios to the four
disturbances—goods technology shock, discount factor shock, output-inventory shock, and
input-inventory shock—that cause most of the variation in GDP and inventories. Following the
goods technology shock, the input-inventory target ratio is strongly countercyclical, as in the
data. Input inventories rise, but, because business capital is costly to adjust, input inventories—
which are complementary to business capital—do not rise enough, so that their ratio to GDP
falls. The output inventory–target ratio is almost acyclical (as in the data), because the household
prefers to maintain a relatively constant balance of output inventories to consumption. The
second row plots the dynamics following the discount factor shock: Because input inventories
fall less than output, the input inventory-to-GDP ratio rises, again generating countercyclical
behavior of the input-inventory-to-target ratio. The third and fourth row plot the responses to
the inventory-specific shocks. Although these shocks are central to reproducing the volatility
of inventory investment observed in the data, they mostly affect the inventory–target ratios
through their effects on the numerators, without having large effects on output or consumption.
In other words, inventory-specific shocks help fit the volatility of inventory investment, but they
do not influence the cyclical properties of the inventory–target ratios, which are mostly driven
by the aggregate productivity shocks.

We conclude this subsection with a note of caution. It is conceivable that our inventory
shocks, which explain a large fraction of the volatility of both inventory types, mask an im-
portant endogenous propagation mechanism. We are, however, skeptical about this possibility.
Our results suggest that inventory “innovations” are unlikely to be the driving forces of busi-
ness cycles: This happens mostly because output inventory shocks generate substitution away
from output inventories into consumption, so that their net effect on total output is small and
because input inventory shocks generate substitution away from input inventories into business
investment, so that their net effect on total output is small. As a consequence, although the
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NOTES: Each row shows the impulse responses to an estimated one-standard-deviation shock. X-axis: Time horizon.
Y-axis: Deviation from baseline, multiplied by 100.

FIGURE 5

IMPULSE RESPONSES OF THE ESTIMATED MODEL TO SELECTED SHOCKS: GDP AND INVENTORY-TO-TARGET RATIOS

inventory shocks might have important consequences in terms of sectoral reallocation, they are
not per se a driving force of business cycle fluctuations.

A comparison between the model and the data. Figure 6 offers a check of the model’s ability
to reproduce key features of the data. We compare the model responses with the impulse re-
sponses from a VAR (with two lags) in the same variables. To enable a proper comparison, we
use a Choleski ordering for both the VAR and the DSGE model, by ordering and orthogonal-
izing the DSGE model reduced form as in the VAR. As the figure shows, most of the model’s
impulse responses lie within the 95% credible sets constructed from the reference VAR, thus
suggesting that the model fits the data reasonably well, except perhaps for its inability to match
some of the hump-shaped responses of variables to shocks. It should be borne in mind that the
model is dominated by the VAR in terms of statistical fit. The log data density of our model is
4,073; the log data densities for unconstrained VAR models in the same observables range from
4,059 (for a VAR with one lag) to 4,331 (for a VAR with four lags). The VAR with two lags
of Figure 6 has a log data density of 4,217. We use such VAR as a benchmark for our DSGE
model, because it attains a higher posterior probability than our model.30 We also note that the

30 Our data span from 1960Q1 to 2007Q4. To compare likelihoods, we estimate both the DSGE and VAR model over
the sample 1965Q1–2007Q4. The marginal likelihood of the DSGE model is computed using the Laplace approximation
around the posterior mode. The observations from 1960Q1 to 1964Q4 are used as a training sample to construct a diffuse
prior for the VAR model as in Smets and Wouters (2007).
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NOTES: Impulse responses from Bayesian VAR with two lags (dashed lines correspond to the median and the 95%
posterior bands) and impulse responses based on the reduced form representation of the DSGE model (solid lines).
Both sets of impulse responses have been orthogonalized in the same way. The posterior of the VAR is obtained
multiplying the likelihood function by the Jeffrey’s prior, as in Doan (2004). Our results are nearly identical using
normal-diffuse prior instead of the Jeffrey’s prior.

FIGURE 6

ORTHOGONALIZED IMPULSE RESPONSES OF THE ESTIMATED MODEL, COMPARISON WITH VAR

inferior performance of the DSGE model is consistent with the findings of other papers where
small-scale DSGE models without bells and whistles are compared with richly parameterized
VAR models.31

In the first two columns of Table 7, we focus on some unconditional correlations in the data
and compare these with those of our estimated model. The central message is that our model
accounts well for the volatility and comovement of the key model variables. In particular, the
model simultaneously accounts for the volatility and procyclicality of inventory investment.32

It successfully mimics the greater volatility of input-inventory investment and its higher degree

31 See, for instance, the discussion in Schorfheide (2000). Del Negro and Schorfheide (2004) propose the so-called
DSGE-VAR approach as a way to compare the DSGE model against a VAR model: Under this approach, one interprets
the DSGE model as a set of restrictions on the VAR, so that the DSGE model induces a prior for the VAR coefficients.
The summary measure of the relative fit of the DSGE model is an estimated hyperparameter (̂λ) measuring the optimal
weight (ranging from zero to infinity) of the DSGE model based prior for the VAR model. We find that the (hybrid)
model that attains the highest marginal likelihood features a small value of λ̂, equal to 0.16. For this reason, we use the
unrestricted VAR (that corresponds to λ = 0) to compare model and data.

32 In Christiano (1988), it was necessary to rely on a more complex information structure in order to account for
these two features of the data. He assumes that, at the time hours and capital decisions are made, firms observe the
shocks with noise. Inventory and consumption decisions are, instead, made with full knowledge of the shocks. When
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NOTES: Responses to an estimated one-standard-deviation technology shock in the goods sector. X-axis: Horizon in
quarters. Y-axis: Deviation from baseline, multiplied by 100. Output is scaled by its steady-state value. Inventory
investment and fixed investment are scaled by steady-state output in the goods sector, so that their impulse responses
measure the growth contribution to goods output.

FIGURE 7

IMPULSE RESPONSES TO A POSITIVE TECHNOLOGY SHOCK IN THE GOODS SECTOR

of procyclicality as compared to output-inventory investment. This result is true whether we
look at the correlation between inventory investment and goods output or the connection
between changes in inventory investment and the change in GDP. Moreover, the model can
reproduce the countercyclicality of the input-inventory target ratio, although not its magnitude,
and the relative acyclicality of the output-inventory target ratio. Finally, the model successfully
reproduces the relative volatilities of all types of investment.

To better gain insights into how our model achieves these results, it is useful to think of a
reference model without inventory depreciation: This model is closer to Christiano’s (1988)
model with inventories as a factor of production. With this assumption, the model’s ability to
explain the behavior of inventories worsens. Figure 7 illustrates this result. With no inventory
depreciation, the response of fixed investment is essentially the same as in the unrestricted
model, but the responses of both types of inventory investment are essentially zero. The positive
response of inventories—relative to this counterfactual—in our estimated model enhances the
amplification mechanism of a given productivity shock: The impact response of GDP rises from
0.6 to 0.7%.

This counterfactual exercise shows that positive depreciation is an essential feature to fit the
volatilities of inventory investment. Differential adjustment costs (greater for fixed capital) are
also important: In their absence, the volatility of business investment would be implausibly large
(we do not report this experiment to avoid cluttering the figure). Absent depreciation, output
inventories would be smooth due to standard consumption smoothing reasons. The intuition as

there is no signal-extraction problem, his model can generate enough inventory-investment variability, but at the cost
of a negative correlation between the change in inventory investment and output growth.
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TABLE 8
PARAMETER ESTIMATES, SUBSAMPLES

1960–83 1984–2007

Prior Mean 5% 95% Mean 5% 95%

δF 0.020 beta 0.01 0.056 0.033 0.082 0.046 0.023 0.074
δM 0.020 beta 0.01 0.022 0.013 0.034 0.022 0.013 0.035
1 + μ 1.500 norm 0.5 1.13 0.64 1.62 1.40 0.79 2.03
1 + ν 1.500 norm 0.5 3.13 2.57 3.70 3.08 2.67 3.56
1 + φ 1.500 norm 0.5 0.93 0.82 0.98 1.16 1.07 1.31
ψF /(1 + ψF ) 0.500 beta 0.2 0.02 0.01 0.03 0.04 0.02 0.06
ψKg/(1 + ψKg) 0.500 beta 0.2 0.27 0.15 0.60 0.16 0.09 0.29
ψKs/(1 + ψKs) 0.500 beta 0.2 0.50 0.23 0.77 0.61 0.30 0.84
ψM/(1 + ψM) 0.500 beta 0.2 0.04 0.02 0.06 0.02 0.01 0.04
ρg 0.750 beta 0.1 0.84 0.79 0.89 0.92 0.86 0.98
ρβ 0.750 beta 0.1 0.93 0.89 0.95 0.92 0.87 0.95
ρF 0.750 beta 0.1 0.95 0.90 0.98 0.94 0.89 0.97
ργ 0.750 beta 0.1 0.85 0.76 0.92 0.88 0.81 0.95
ρM 0.750 beta 0.1 0.95 0.92 0.97 0.97 0.95 0.98
ρs 0.750 beta 0.1 0.94 0.90 0.97 0.95 0.93 0.98
ζKg/(1 + ζKg) 0.500 beta 0.2 0.91 0.80 0.98 0.90 0.79 0.98
ζKs/(1 + ζKs) 0.500 beta 0.2 0.37 0.17 0.57 0.88 0.74 0.97
σg 0.025 invg Inf 1.91% 1.59% 2.28% 1.51% 1.03% 2.63%
σβ 0.025 invg Inf 3.83% 2.47% 5.63% 3.17% 1.91% 4.85%
σF 0.01 invg Inf 0.38% 0.28% 0.50% 0.47% 0.33% 0.62%
σγ 0.01 invg Inf 0.51% 0.40% 0.67% 0.78% 0.58% 1.13%
σM 0.05 invg Inf 14.1% 10.5% 18.9% 12.8% 9.4% 16.4%
σs 0.025 invg Inf 1.70% 1.31% 2.26% 1.49% 1.15% 1.96%
σg,s 0.50 norm 0.25 0.72 0.61 0.81 0.44 0.29 0.59

to why input inventories become less volatile than fixed capital, if they do not depreciate, can be
most easily provided when there are no adjustment costs. In this case, input inventories would
respond to a productivity shock less than capital because these shocks have a larger effect on the
marginal return to fixed capital. This occurs because a productivity shock has the same effect,
percentage-wise, on the marginal return to fixed capital and inventories. When the depreciation
rate on inventories is zero, and fixed capital must be compensated for the higher depreciation
rate with a higher return, the absolute effect of a shock to the marginal return to capital is much
greater in absolute value. As a result, capital would be more responsive to productivity shocks
than input inventories. The bottom two panels of Figure 7 suggest that this effect is not undone
by allowing for greater adjustment costs for capital at our estimated parameter values.

5.2. Subsamples.

Parameter estimates. We reestimate the model (with the same priors) over the subperiods
1960:1–1983:4 and 1984:1–2007:4. We allow σ, α, θg,θs, and γ to differ across subsamples to match
the different sample means for the share of services in the economy and for the investment and
the inventory ratios relative to goods output (reported in Table 3). This exercise allows us to
investigate what lies at the root of the decline in output volatility since 1984 and what role,
if any, inventories may have played in this regard. We should make clear, however, that our
approach can only address a subset of the explanations of the Great Moderation that have been
put forward in the literature. For instance, we cannot properly address the role of changes in
policies in reducing output volatility.

Table 8 reports the results of the subsample estimation. With few exceptions, the full-sample
parameter estimates lie between those for the two subsamples. Regarding the structure of the
economy, some results are worth emphasizing. First, the depreciation rate for output inventories,
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TABLE 9
VARIANCE DECOMPOSITIONS, SUBSAMPLES

σg σβ σF σγ σM σs

1960–83
Ŷg 79.0 17.9 1.8 0.7 0.6 0.001

Ŷs 12.3 0.8 0.0 38.6 1.5 46.8
Ĩ 43.9 40.7 0.1 1.2 14.1 0.002
�̃F 12.7 4.7 81.0 0.1 1.5 0.0
�̃M 17.4 19.7 0.1 0.0 62.8 0.0
Ĉg 69.0 7.3 5.1 7.4 11.2 0.03
̂GDP 81.6 14.9 1.3 0.1 0.4 1.6

1984–2007
Ŷg 49.4 41.9 3.7 3.7 1.2 0.02

Ŷs 1.3 0.3 0.2 30.8 0.1 67.3
Ĩ 21.2 68.7 0.1 0.1 9.9 0.0
�̃F 2.3 3.7 93.6 0.1 0.3 0.001
�̃M 7.9 30.7 0.1 0.01 61.3 0.0
Ĉg 65.9 6.6 8.3 12.8 6.2 0.2
̂GDP 51.5 39.0 2.5 0.1 0.8 6.2

F, is smaller in the second part of the sample, as it goes from 5.6% to 4.6%. Second, output
inventories and consumption become less substitutable (μ increases). Third, the utilization
function for capital in the service sector becomes more convex (ζKs rises). Fourth, capital in the
goods (service) sector becomes less (more) costly to adjust in the second period.

It is difficult to provide exhaustive explanations for the changes in these “deep” parameters
of the model. Potential reasons for the lower estimate of the depreciation rate δF might be a
change in the inventory mix or better inventory management in general. It is not clear how to
interpret the change in adjustment costs for fixed capital, although the higher costs in the service
sector might reflect (1) the increased weight of innovative investment in the second subperiod
and the greater associated costs in terms of learning and disruption or (2) higher sector (or firm)
specificity of capital goods.

We also find important changes in the parameters measuring the stochastic processes for
technology and preferences. The most important result is that the volatility of general technology
shocks in the goods and service sectors falls. They also become less correlated with each other.
There is also a decrease in the volatility of the input-inventory shock, consistent with the idea
that new methods of inventory management adopted since the early 1980s have made it easier
to control the level of input inventories in efficiency units. However the decrease is not large.

Standard deviations, correlations and variance decompositions. Table 7 shows that, across
the two subperiods, the model can reproduce the volatility decline in most macroeconomic
aggregates. For instance, in our data, the standard deviation of detrended GDP falls by 0.77
percentage points between the 1960–83 and 1984–2007 subperiods (from 1.89% to 1.12%). Our
subsample estimates match the volatility decline, showing a reduction in the standard deviation
of GDP of 0.76 percentage points. Our model also captures the decrease in the volatility of
input inventories but not the one of output inventories. The model can also account for the
reduced procyclicality of output inventory investment after 1983.

Table 9 shows how, in the second subperiod, output (input) inventory movements depend
more (less) on their own innovations. As for the other variables, a larger fraction of the volatility
in economic activity is due to demand-preference shocks: In the second part of the sample, the
share of GDP variance that can be accounted for by discount rate shocks rises from about 15%
to about 40%.
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TABLE 10
ACCOUNTING FOR THE DECLINE IN VOLATILITY

Value Contribution to Change (× 100)

Parameter 1960–83 1984–2007 σ( ̂GDP) σ(Ŷg) σ(Ŷs) σ(̃I)

δF 0.056 0.046 0.00 0.00 0.01 −0.01
δM 0.022 0.022 −0.01 −0.02 0.00 −0.01
1 + μ 1.13 1.40 −0.01 −0.02 0.00 −0.01
1 + ν 3.13 3.08 0.00 −0.01 0.00 0.00
1 + φ 0.93 1.16 0.02 −0.03 −0.01 −0.05
ψF /(1 + ψF ) 0.02 0.04 0.00 −0.01 0.01 0.01
ψKg/(1 + ψKg) 0.27 0.16 0.21 0.36 0.00 0.42
ψKs/(1 + ψKs) 0.50 0.61 −0.08 −0.13 −0.01 −0.16
ψM/(1 + ψM) 0.04 0.02 0.03 0.06 0.00 0.00
ζKg/(1 + ζKg) 0.91 0.90 −0.02 −0.02 −0.01 −0.01
ζKs/(1 + ζKs) 0.37 0.88 −0.16 −0.12 −0.24 −0.13

All estimated parameters 0.06 0.19 −0.27 0.14
F/Yg 0.30 0.36 0.01 0.01 0.00 −0.01
M/Yg 1.37 1.07 −0.04 −0.09 0.01 −0.04
(Kg + Ks)/Yg 13.48 14.11 0.06 0.09 −0.04 0.00
Y ′

s/Yg 0.54 0.88 −0.20 0.00 0.01 0.00

All steady-state parameters −0.16 0.04 −0.01 −0.06
σg 1.91% 1.51% −0.29 −0.40 −0.05 −0.10
σF 0.38% 0.47% 0.01 0.02 0.01 0.00
σM 14.13% 12.77% −0.01 −0.01 −0.01 −0.01

All shocks −0.52 −0.64 −0.06 −0.25
All parameters and shocks −0.76 −0.73 −0.35 −0.30

NOTES: Columns 2 and 3 indicate the estimated value of the parameter in the first column in each subsample. In the last
four columns, we take the period 1960–83 as the baseline period and change each parameter to its 1984–2004 value to
account for its contribution to reducing volatility. The columns indicate, for each variable, the change in the standard
deviation (× 100) due to the change in that parameter.

5.3. The Role of Inventories in the Great Moderation. Prompted by the preceding results, a
natural question is to what extent the reduced volatility of economic activity is due to a reduction
in the volatility of the shocks—the “good luck” hypothesis—or to a change in the economy’s
structure. To answer this question, we partition the factors that can affect the implied volatility
of the model variables into the following three sets:

(i) Parameters that are estimated without using information on the steady-state ratios. This
parameter set includes the autocorrelation of the shocks, the inventory depreciation rates,
the elasticities of substitution, the adjustment costs, and the capital utilization parameters.

(ii) Parameters that are determined using steady-state information. When we estimate the
model across subsamples, we choose values of α, γ, σ, θg, and θs that match the values of
the ratios of input inventories to output and capital investment to output, plus the share
of services in GDP, for each subperiod, conditional on the depreciation rates and the
elasticities of substitution.

(iii) Parameters that measure the unconditional volatility of the shocks.

Table 10 breaks down how the three sets of parameters above contribute to the reduction
in volatility captured by the model. Using the estimates obtained from the 1960–83 sample
as a reference point, we change one estimated parameter at a time, setting it to the value
estimated for the 1984–2007 sample. This way, we can approximately measure each parameter’s
contribution to the change in volatility. The main result is that most of the reduction in GDP
volatility is attributable to the reduction in the volatility of the underlying shocks—especially
of the technology shock in the goods sector. This is consistent with the conclusions reached by
Stock and Watson (2003) and Justiniano and Primiceri (2008). By themselves, smaller shocks can
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explain a reduction in GDP volatility of 0.52 percentage points (as measured by the standard
deviation), compared to an estimated total decline of 0.76 percentage points. Most of the
remainder is attributable to larger capacity-utilization costs, as well as the increased importance
(share) of services in the economy. The latter, for instance, accounts for a quarter in the
reduction in GDP volatility.

What about the role inventories may have played in the Great Moderation? There is a
reduction in the volatility of input-inventory shocks, but it is small and it accounts only for
about 0.01 percentage points of the total reduction in volatility of GDP and goods output. We
also consider the effect of changes in α, γ, σ, θg, and θs implied by the changes in the steady-state
ratios. Consider, for instance, the consequences of setting M/Yg equal to its post-1984 average
value, whereas keeping all the other ratios and parameters—except α, γ, σ, θg, and θs—at the
pre-1984 level: The decline in M/Yg is likely to be an indicator of better inventory control
methods such as “just-in-time” or “flexible manufacturing systems.” Such decline accounts
for approximately 0.04 percentage points of the decrease in the volatility of GDP and 0.09
percentage points of the decrease in the volatility of output of the goods sector.

To summarize, our estimated model suggests that reductions in the volatility of the model’s
technological shocks account for most of the reduction in GDP volatility—a result generally
consistent with the “good luck” hypothesis. Structural changes in the model’s parameters have
contributed to the reduction in GDP volatility by a smaller amount, working primarily through
parameter changes that reduced the volatility of fixed investment. There is only a small role
for inventory investment in the Great Moderation, associated with the decrease in the input
inventories to output ratio. This conclusion is consistent with Khan and Thomas (2007), who
consider how aggregate volatility changes in a general equilibrium model following a decrease in
fixed ordering costs, and with Wen (2009), who shows that a decrease in idiosyncratic uncertainty
and information frictions, which in turn reduces the level of inventories held by firms, does not
lead to a decline in aggregate volatility.

6. INPUT AND OUTPUT INVENTORIES: MORE ON MOTIVATION AND EXTENSIONS

In this section we return to the arguments we have used to motivate the holding of inventories.
We first explore in more detail the equivalence of the choice of introducing inventories in the
utility function with the choice of including them in the budget constraint on the basis of
the assumption that they affect shopping costs. We then provide a different model for input
inventories that focuses on the notion that inventories are “used up” during the production
process.

6.1. The Role of Inventories in Reducing Shopping Costs. Our formulation that treats out-
put inventories as a good entering the utility function is convenient, simple, and has interesting
empirical properties. For example, it can rationalize why the ratio between output inventories
and consumption is essentially acyclical, because the consumer (absent large fluctuations in
the user cost of holding inventories) prefers to hold a relatively constant ratio of F over Cg

over time. However, one might feel uncomfortable about putting output inventories in the
utility function, when what output inventories really do is to make the consumer life easier
by reducing shopping costs. This argument means that output inventories should essentially
affect the consumer through the budget constraint, instead of the utility function. We can show
that—at least for an empirically relevant, simpler version of the utility function—our model is
equivalent to a model where output inventories do not enter the utility function at all, but affect
the consumer via the budget constraint by affecting the cost of purchasing goods. The argument
follows Feenstra (1986), who discusses the functional equivalence of including money in the
utility function or liquidity costs in the budget constraint. These liquidity costs are decreasing in
inventories and increasing in goods consumption and the functional form of the shopping cost
function can be explicitly derived. Assume a unit elasticity of substitution between services and
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good consumption, as suggested by our estimates. In this case our utility function becomes

E0

∞∑
t=0

βtεβt(γεγt log Xt + (1 − γεγt) log Cst − τ (Lgt + Lst))

with Xt still equal to (αεFtC
−μ
gt + (1 − αεFt)F−μ

t−1)−1/μ. It can be shown that this model yields the
same equilibrium conditions as a model where inventories do not appear in the utility function,
and the latter is written as33

E0

∞∑
t=0

βtεβt(γεγt log Gt + (1 − γεγt) log Cst − τ(Lgt + Lst)),

where Gt denotes goods consumption net of shopping costs, so that Cgt = Gt + φ(Gt, Ft). The
term φ(Gt, Ft) denotes the shopping cost function that appears an additional argument in the
budget constraint, Equation (4), and can be shown to take the following form:

φ(Gt, Ft) =
((

1
α

− 1 − α

α

(
Gt

Ft

)μ)− 1
μ

− 1

)
Gt.(17)

At our model estimates for α, μ (and given the steady-state ratios implied by the data), the
function φ(Gt, Ft) is decreasing and convex in the stock of output inventories. Moreover, one
can estimate the transaction costs to be equal to approximately 2% of total goods output, which
seems a reasonable number.

6.2. A “Usage Only” Model of Input Inventories. As we mentioned above, our model
allows for a convenience yield of holding a larger stock of input inventories in producing value
added. This convenience yield accrues in production over and above the usage of inventories,
which is maximized out in deriving the value added production function. In other words, by
focusing on value added (gross output minus materials used), one pushes the material usage
decision in the background, but does not abstract from it.

In this section we outline and analyze an alternative model with no additional convenience
yield and that focuses on the usage of material in producing gross output.34 This model is based
on the following assumptions: (1) Only inventories that are “used up” augment society’s ability
to produce more gross output and (2) the usage of inventories depends upon the beginning of
period stock. These considerations lead to a production function for gross output of the form

Ygt = (AgtLgt)1−θg (σ(zgtKgt−1)−ν + (1 − σ)(εMtzMtMt−1)−ν)−θg/ν,(18)

where zMt denotes the utilization rate of inventories, so that the term zMtMt−1 denotes in-
ventories used in production. We also assume that higher utilization of inventories leads to a
greater wastage and, hence, to higher depreciation in a convex fashion. As a result, the total
“depreciation rate” for inventories is now the sum of three parts:

dMt = δM + zMt + aMt(zMt),(19)

where δM is a fixed component of the depreciation rate unrelated to usage and reflecting wastage
and/or linear holding costs, the term zMt captures the usage of materials (proportional to the
stock), and the term aMt describes the additional component of wastage that depends upon

33 The technical appendix discusses this equivalence in more detail.
34 Our technical appendix contains more complete details on this model.
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TABLE 11
PRIOR DISTRIBUTIONS AND PARAMETER ESTIMATES OF THE MODEL WITH USAGE OF INVENTORIES

Prior Usage Model
Baseline Model

Mean Distrib. St.dev. Mean 5% 95% Mean

δF 0.020 beta 0.01 0.078 0.053 0.106 0.081
δM 0.020 beta 0.01 0.009 0.003 0.018 0.022
1 + μ 1.500 norm 0.5 1.33 0.91 1.76 1.30
1 + ν 1.500 norm 0.5 4.20 3.75 4.61 3.60
1 + φ 1.500 norm 0.5 1.01 0.86 1.17 1.03
ψF /(1 + ψF ) 0.500 beta 0.2 0.02 0.01 0.04 0.03
ψKg/(1 + ψKg) 0.500 beta 0.2 0.27 0.19 0.36 0.20
ψKs/(1 + ψKs) 0.500 beta 0.2 0.51 0.39 0.65 0.47
ψM/(1 + ψM) 0.500 beta 0.2 0.08 0.05 0.11 0.02
ρg 0.750 beta 0.1 0.83 0.79 0.87 0.86
ρβ 0.750 beta 0.1 0.97 0.95 0.98 0.93
ρF 0.750 beta 0.1 0.94 0.91 0.97 0.92
ργ 0.750 beta 0.1 0.84 0.78 0.89 0.86
ρM 0.750 beta 0.1 0.95 0.93 0.97 0.94
ρs 0.750 beta 0.1 0.95 0.92 0.97 0.94
ζKg/(1 + ζKg) 0.500 beta 0.2 0.98 0.96 1.00 0.95
ζKs/(1 + ζKs) 0.500 beta 0.2 0.13 0.06 0.20 0.80
ζM/(1 + ζM) 0.500 beta 0.2 0.25 0.14 0.41

σg 0.025 invg Inf 1.49% 1.29% 1.70% 1.49%
σβ 0.025 invg Inf 8.95% 5.82% 13.50% 3.80%
σF 0.01 invg Inf 0.35% 0.27% 0.45% 0.33%
σγ 0.01 invg Inf 0.66% 0.52% 0.86% 0.65%
σM 0.05 invg Inf 6.68% 5.52% 8.06% 10.34%
σs 0.025 invg Inf 1.34% 1.06% 1.72% 1.52%
σg,s 0.50 norm 0.25 0.49 0.39 0.59 0.72

utilization in a convex fashion: This component reflects the idea that, at the margin, a higher or
faster usage might provoke collateral damage to the remaining parts of the stock that are not

directly used in production. Namely, we assume that aMt = RM( ζM
2 − 1 + (1 − ζM) zMt

zM
+ ζM

2
z2

Mt

z2
M

),

where RM = 1
β

= 1 − δM. The function aMt is convex in zMt and is normalized so that it equals
zero when zMt equals the optimal, steady-state choice zM.35 In the absence of direct estimates of
the fraction of the stock of input inventories that is used in production, we set the steady-state,
optimal utilization rate at 20% when taking the model to the data. The resource constraint is
now

Ygt = Cgt + Kgt − (1 − δKg(zgt))Kg
t−1 + Kst − (1 − δKs(zst))Ks

t−1

+ Ft − (1 − δF )Ft−1 + Mt − (1 − (δM + aMt))Mt−1 + zMtMt−1 + ACt,
(20)

where ACt denotes total adjustment costs. Value added in the goods sector is then obtained by
subtracting materials used, zMtMt−1 from gross output, Ygt.

We then estimate the model using the same priors of our baseline model (we estimate an
additional parameter, ζM, which measures the convexity of the utilization function). Table 11
reports the estimates. Figure 8 compares the impulse responses to a technology shock in the

35 The assumption of convexity allows us to solve the model using standard perturbation methods; most importantly,
it captures the idea that, at the margin, a higher utilization rate leads to a higher depreciation. Note that there are
some analogies with the way we write down the utilization function for fixed capital. For fixed capital, we assume that
the optimal (steady state) utilization rate of capital is unity and normalize the utilization function so that no resources
are wasted at the optimal utilization rate. Instead, here we normalize the function aMt so that the optimal steady-state
utilization rate is less than unity.
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NOTES: X-axis: Time horizon. Y-axis: Deviation from baseline, multiplied by 100.

FIGURE 8

IMPULSE RESPONSES TO A POSITIVE TECHNOLOGY SHOCK IN THE GOODS SECTOR: BASELINE MODEL AND MODEL

WITH INVENTORY USAGE

goods sector between the baseline model and the usage only model. The overall conclusion
is that the two models yield similar impulse response functions and, more in general, have
very similar implications for the business cycle properties of the variables of interest. One
interesting difference is that the “usage only” model generates a high steady-state return on the
stock of inventories—this happens because it implies a higher depreciation rate on the stock of
inventories that is used in production—thus enhancing somewhat the response of inventories
to productivity shocks. Although valuable and yielding some interesting results, this model is
based on a set of assumptions that some would regard as more stringent that those of our
preferred model. Specifically, materials purchased in the period cannot be used immediately in
production. Moreover, the assumption that greater use leads to greater depreciation in a convex
fashion may be questioned.

7. CONCLUSIONS

The most important lesson of this article is that an estimated DSGE model can incorporate
inventories and fit the data reasonably well with plausible and interesting estimates of struc-
tural parameters that help characterize the role of input and output inventories. Each type of
inventory investment plays a logically different role in the model and exhibits different degrees
of volatility and procyclicality. The model can replicate the observed volatility and cyclicality
of both input and output inventory investment and particularly the fact that input-inventory
investment is more volatile and procyclical than output-inventory investment. Moreover, the
model can reproduce the countercyclicality of the input inventory–target ratio and the relative
acyclicality of the output inventory–target ratio. This finding represents a step forward relative
to previous attempts to model inventories in DSGE models, especially given our model’s ability
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to fit the data. Thus, our model provides a new, more expansive, and data-consistent framework
for analyzing the cyclical properties of inventories.

When estimated across two subperiods, 1960–83 and 1984–2007, the model captures the
volatility reduction observed in aggregate variables, as well as the decline in procyclicality of
output-inventory investment. However, the model suggests that the bulk of the Great Mod-
eration is explained primarily by a reduction in the volatility of the technology shock in the
goods sector (and of the discount rate shock). The reduction in the volatility of inventory shocks
accounts for only a small portion of the decrease in output volatility. Nevertheless, the model’s
framework identifies several dimensions along which the economy’s structure changed in an
economically important manner and contributed to the reduction in GDP volatility. Some of
these structural changes are related to inventory behavior and influence the propagation role
inventories play in the macroeconomy, but, at best, they have only played a minor role in
accounting for the reduced volatility of output.

These conclusions are based on an estimated two-sector general equilibrium model that
includes novel features such as the distinction between goods-producing and the services-
producing sectors according to their inventory-holding behavior and the distinction between
input and output inventories. Nonzero inventory depreciation, which in the model provides
an incentive to adjust inventories more in response to shocks, is another novel feature that is
empirically important.

Despite the additional complexity, our model precludes an examination of certain aspects of
inventory behavior that may be important to understanding business cycle fluctuations. First, we
eschewed a richer examination of the stage-of-fabrication structure within the goods sector. For
example, classifying inventories into only two types abstracts from the supply and distribution
chains that pervade the actual input–output structure of the goods sector and probably play
a vital role in the propagation of shocks. A second issue is that the model is silent on how
markup variations and nominal features matter for inventory behavior and business cycles.
Some inventory research examines how markup variation or interest rate policies influence
inventory behavior. However, this work with nominal rigidities generally has not incorporated
the inventory distinction in a general equilibrium setting that we have advanced here. Third,
we have sidestepped the micro-founded motivation for firms’ holding of finished goods (output
inventories): By focusing on the value of output inventories to households through utility and
concentrating on the social planner’s solution, we have not taken up a more detailed examination
of the determinants of a firm’s decision to hold output inventories in a market environment. We
plan to address these issues in future work, and we hope that others will too.
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