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The toolkit adapts a first-order perturbation approach and applies it in a piecewise fashion
to solve dynamic models with occasionally binding constraints. Our examples include a
real business cycle model with a constraint on the level of investment and a New
Keynesian model subject to the zero lower bound on nominal interest rates. Compared
with a high-quality numerical solution, the piecewise linear perturbation method can
adequately capture key properties of the models we consider. A key advantage of the
piecewise linear perturbation method is its applicability to models with a large number of
state variables.
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1. Introduction

Inequality constraints that bind occasionally arise in a wide array of economic applications. We describe how to adapt a
first-order perturbation approach and apply it in a piecewise fashion to handle occasionally binding constraints. To
showcase the applicability of our approach, we solve two popular dynamic stochastic models. The first model is an RBC
model with limitations on the mobility of factors of production. The second model is a canonical New Keynesian model
subject to the zero lower bound on nominal interest rates. As is typical for dynamic models, the models we consider do not
have a closed-form analytical solution. In each case, we compare the piecewise linear perturbation solution with a high-
quality numerical solution that can be taken to be virtually exact.2

Our contribution is twofold. First, we outline an algorithm to obtain a piecewise linear solution. While the individual
elements of the algorithm are not original, our recombination simplifies the application of this type of solution to a general
class of models.3 We offer a library of numerical routines, OccBin, that implements the algorithm and is compatible with
Dynare, a convenient and popular modeling environment (Adjemian et al., 2011). Second, we present a systematic
assessment of the quality of the piecewise linear perturbation method relative to a virtually exact solution, which has not
been attempted by others. Because standard perturbation methods only provide a local approximation, they cannot capture
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occasionally binding constraints without adaptation. Our analysis builds on an insight that has been used extensively in the
literature on the effects of attaining the zero-lower bound on nominal interest rates.4 That insight is that occasionally
binding constraints can be handled as different regimes of the same model. Under one regime, the occasionally binding
constraint is slack. Under the other regime, the same constraint is binding. The piecewise linear solution method involves
linking the first-order approximation of the model around the same point under each regime. Importantly, the solution that
the algorithm produces is not just linear – with two different sets of coefficients depending on whether the occasionally
binding constraint is binding or not – but rather, it can be highly nonlinear. The dynamics in one of the two regimes may
crucially depend on how long one expects to be in that regime. In turn, how long one expects to be in that regime depends
on the state vector. This interaction produces the high nonlinearity.

Our assessment focuses on several aspects of the solution. Following Christiano and Fisher (2000), we compare moments
of key variables by reporting mean, standard deviation, and skewness. Following Taylor and Uhlig (1990), we compare plots
of stochastic simulations. In addition, we assess the accuracy of the piecewise linear approximation by computing two
bounded rationality metrics. The first metric is the Euler equation residual, following Judd (1992). The Euler equation
residual quantifies the error in the intertemporal allocation problem using units of consumption. The second metric relies
on the broader evaluation of expected utility. Intuitively, the closest approximation to the solution of the model will lead to
the highest utility level. The difference in utility implied by two solution methods can also be expressed as a compensating
variation in consumption that a utility-maximizing agent would have to be offered in order to continue using the less
accurate method. On the basis of these comparisons and assessments, we find that the piecewise linear perturbation
method can capture adequately key properties of the models we consider.

We also highlight some limitations of the piecewise linear solution. Namely, just like any linear solution, it discards all
information regarding the realization of future shocks. Accordingly, our piecewise linear approach is not able to capture
precautionary behavior linked to the possibility that a constraint may become binding in the future, as a result of shocks yet
unrealized. However, the piecewise method also inherits some of the key advantages of a first-order perturbation approach.
It is computationally fast and applicable to models with a large number of state variables even when the curse of
dimensionality renders other higher-quality methods inapplicable.5 Moreover, our library of numerical routines accepts a
model written in a natural way with no meaningful syntax restrictions. Accordingly, application of our algorithm to different
models requires only minimal programming.

Section 2 outlines the piecewise linear solution algorithm. Section 3 relates our approach to the literature. Section 4
considers a real business cycle model with a constraint on investment. Section 5 considers a New Keynesian model subject
to the zero lower bound on nominal interest rates. Section 6 concludes.

2. The solution algorithm

For clarity of exposition, we confine our attention to a model with only one occasionally binding constraint. Extensions to
multiple occasionally binding constraints are implemented in the library of routines.

A model with an occasionally binding constraint is equivalent to one with two regimes. Under one regime, the
occasionally binding constraint is slack. Under the other regime, the constraint binds. We linearize the model under each
regime around the non-stochastic steady state, although a different point could be chosen. We dub the regime that applies
at the point of linearization the “reference” regime, or (M 1). We dub the other regime “alternative”, or (M 2). It is immaterial
whether the occasionally binding constraint is slack at the reference regime or at the alternative regime.

There are two important requirements for the application of our algorithm.
1.
of t
illu

fact
fore
The conditions for existence of a rational expectations solution in Blanchard and Kahn (1980) hold at the reference
regime.
2.
 If shocks move the model away from the reference regime to the alternative regime, the model will return to the
reference regime in finite time under the assumption that agents expect that no future shocks will occur.6

2.1. Definition of a piecewise linear solution

Without loss of generality, when the occasionally binding constraint gðEtXtþ1;Xt ;Xt�1Þr0 is slack, the linearized system
of necessary conditions for an equilibrium under the reference regime can be expressed as

AEtXtþ1þBXtþCXt�1þEϵt ¼ 0; ðM1Þ
4 Recent examples of the use of this technique include Jung et al. (2005), Eggertsson and Woodford (2003), Christiano et al. (2011).
5 The library of routines that accompanies this paper contains additional examples of models that can be solved with a piecewise linear algorithm. One
he examples is the celebrated Smets and Wouters (2007) model, extended to incorporate the zero lower bound on the policy interest rate. As an
stration of the speed of the piecewise linear algorithm, our toolkit solves that model in a fraction of a second.
6 This restriction might appear draconian, but it is routinely imposed when solving DSGE models with standard first-order perturbation methods. In
, the linear approximation to the solution could be equivalently characterized as implementing either the rational expectations restrictions or perfect
sight.
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where X is a vector of size n that collects all the endogenous variables; Et is the expectation operator, conditional on
information available at time t; A, B, and C are n�n matrices of structural parameters for the model's linearized equations
that are conformable with X; ϵ is a vector of zero mean, i.i.d. exogenous innovations of size m and E is an n�m matrix of
structural parameters.

When the constraint binds, then hðEtXtþ1;Xt ;Xt�1Þ40. The analogous system of necessary conditions for an equilibrium
under the alternative regime, linearized again around the non-stochastic steady state, can be expressed as

AnEtXtþ1þBnXtþCnXt�1þDnþEnϵt ¼ 0: ðM2Þ
The matrices An, Bn, Cn are again n�n matrices of structural parameters. In addition, under (M2) there is a column vector of
parameters Dn whose size is n. The presence of Dn arises from the fact that the linearization is carried out around a point
(the steady state by our choice) in which regime (M 1) applies. Finally En is another n�m matrix of structural parameters.
Notice that the conditions implied by the functions g and h above are assumed to be mutually exclusive and collectively
exhaustive. We are now in a position to define a solution for our model.

Definition 1. A solution for a model with an occasionally binding constraint is a function f :Xt�1 � ϵt-Xt such that the
conditions under system (M 1) or the system (M 2) hold, depending on the evaluation of the occasionally binding constraint,
governed by g and h.

An alternative way of characterizing the function f relies on matrix expressions which closely mirror the familiar decision
rules of a linearized dynamic model. Accordingly, given initial conditions X0 and the realization of a shock ϵ1, the function f
can be expressed as a set of matrices Pt , a set of matrices Rt , and a matrix Q1, such that

Xt ¼PtXt�1þRtþQ1ϵ1 for t ¼ 1 ð1Þ

Xt ¼PtXt�1þRt 8tAf2;1g: ð2Þ
As Eqs. (1) and (2) show, the solution from our piecewise algorithm need not be linear, even if the original system

described by (M 1) and (M 2) is. At each point in time the matrices Pt , Qt , Rt are time varying, even if they are functions of
Xt�1 and ϵ1 only.

2.2. The solution algorithm

Given the conditions for an equilibrium in M 1 and M 2, and given the occasionally binding constraint expressed in g and
h, the following algorithm characterizes the piecewise linear solution f, defined above. The output of the algorithm is a time
varying decision rule whose general form is given in Eqs. (1) and (2). Accordingly, the algorithm shows how to compute the
matrices Pt , Qt , and Rt given initial conditions X0 and given the realization of a shock ϵ1.

The algorithm employs a guess-and-verify approach. First, we guess the periods in which each regime applies. Second,
we proceed to verify and, if necessary, update the initial guess as follows:
1.
 Let T be the date when the current guess implies that the model will return to regime (M 1). Then for any tZT , using
standard perturbation methods, one can characterize the linear approximation to the decision rule for Xt, given Xt�1, as

Xt ¼PXt�1þQϵt ; ðM1DRÞ
where P and Q are n�n and n�m matrices of reduced-form parameters, respectively. Then, using the notation of
Equation (2), for any tZT , Pt ¼P, Rt ¼ 0.
2.
 Using XT ¼PXT�1 and Equation (M 2), coupled with the assumption that agents expect no shocks beyond the first period,
the solution in period T�1 will satisfy the following matrix equation:

AnPXT�1þBnXT�1þCnXT�2þDn ¼ 0: ð3Þ
Solve the equation above for XT�1 to obtain the decision rule for XT�1, given XT�2:

XT�1 ¼ �ðAnPþBnÞ�1ðCnXT�2þDnÞ: ð4Þ
Accordingly, PT�1 ¼ �ðAnPþBnÞ�1Cn and RT�1 ¼ �ðAnPþBnÞ�1Dn.
3.
 Using XT�1 ¼PT�1XT�2þRT�1 and either (M 1) or (M 2), as implied by the current guess of regimes, solve for XT�2

given XT�3.

4.
 Iterate back in this fashion until X0 is reached, applying either (M 1) or (M 2) at each iteration, as implied by the current

guess of regimes.

5.
 Depending on whether regime (M 1) or (M 2) is guessed to apply in period 1, Q1 ¼ �ðAP2þBÞ�1E, or

Q1 ¼ �ðAnP2þBnÞ�1En. Trivially, in the special case in which regime (M 1) is guessed to apply in all periods, one can
see that Q1 ¼Q, consistent with equation (M 1DR).
6.
 Using the guess for the solution obtained in steps 1 to 5, compute paths for X to verify the current guess of regimes. If the
guess is verified, stop. Otherwise, update the guess for when regimes (M 1) and (M 2) apply and return to step 1.
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solution to (M 1). In general, the guess will have to be updated, because a switch in regimes is associated with a change in

Given X and ϵ , an expedient initial guess of regimes can be obtained by applying the standard first-order perturbation

the paths of the endogenous variables. A choice for the updating scheme in step 6 that we have found resilient in practice is
to use the path for X from the previous iteration to infer a new guess of regimes. As an alternative, one may choose to
dampen the iterations by shrinking (or expanding) the number of periods when a certain regime applies only gradually, in a
fashion analogous to the Gauss–Jacobi algorithm.

Computation of the solution requires a series of inversions for the matrix J t � ðAnPtþBnÞ, for t¼2 to t¼T. Contingent on
a guess for a sequence of regimes, non-invertibility of the matrix J t implies the existence of multiple paths that lead back
from the point XT to the point X0. In that case, the application of a pseudo-inverse, as suggested by Chen et al. (2012),
arbitrarily selects one of these paths.

Notice that for multiple solutions to exist, non-invertibility of J t is neither sufficient nor necessary. It is not sufficient
because one needs to also verify that the given guess of regimes is consistent with the occasionally binding constraint of
interest after calculation of a full path for X. It is not necessary because distinct sequences of regimes may support multiple
solutions.
2.3. Implementation of the algorithm

The paper is complemented by a library of numerical routines, OccBin, that implements the piecewise linear solution
algorithm using the MATLAB programming language. Our routines are designed as an add-on to Dynare, a widely used set of
programs for the solution and estimation of DSGE models. Dynare lets users specify a DSGE model using a readable syntax
that imposes only trivial requirements in the way a model is specified. The programs we devised take as inputs two Dynare
model files. One file specifies the model (M 1) at the reference regime. The other file specifies the model at the alternative
regime (M 2). We use the analytical derivatives computed by Dynare to construct A;B; C; E;An;Bn; Cn;Dn, and En in equations
(M 1) and (M 2). We also use the routines in Dynare to construct the matrices P and Q in equation (M 1DR).
2.4. Characteristics of the piecewise linear solution

A simple linear difference equation with an expectational term and a control term is an ideal vehicle to illustrate key
characteristics of the piece-wise linear solution, before moving to a broader assessment of its performance for richer
models. Consider a variable q whose evolution is determined by the following schedule:

qt ¼ βð1�ρÞEtqtþ1þρqt�1�σrtþut ; ð5Þ

where Et is the conditional expectation operator, and β¼ 0:99, ρ¼ 0:5, and σ ¼ 5 are parameters. The current realization of
the variable, qt, depends on its expectation for next period, and its value for the previous period. The variable also depends
on the control term, rt, and an exogenous shock ut, which follows an AR(1) process with the autoregression coefficient of 0.5
and a standard deviation of the innovation equal to 0.05. In turn, the control variable follows a simple feedback rule:

rt ¼maxðr;ϕqtÞ; ð6Þ

where ϕ¼ 0:2 is a parameter. The max operator prevents rt from falling below a certain lower bound chosen as
r ¼ �ð1=β�1Þ. This system of difference equations has various economic interpretations.7 For concreteness, we interpret
q as an asset price and r as a net policy interest rate (in deviation from its steady state of 1=β�1), subject to the zero
lower bound.

The policy functions for qt and rt implied by the piecewise linear method are shown in Fig. 1. Starting from steady state,
for realizations of the shock ut above a certain threshold, the decision rules are simply linear (and by construction there is no
difference with a linear solution). For realizations of ut above the threshold, higher values of ut lead to higher asset prices
and, through the feedback rule, higher interest rates.

When ut falls below the threshold, the feedback rule for the interest rate hits the lower bound constraint, and the
piecewise linear solution implies a switch in regimes. At this point, the policy functions depend on the expected duration of
the lower-bound regime. Negative realizations of ut of larger magnitude imply a longer duration of the zero bound regime.
In turn, this mechanism leads to a deeper decline in asset prices because the feedback rule is temporarily switched off. The
inset panel of Fig. 1 highlights that the slope of the decision rule is a step function. The different steps (slopes of the policy
function for the asset price) correspond to different expected durations of the regime in which the lower bound on the
interest rate is enforced.

To underscore the value of concatenating the conditions for an equilibrium under different regimes, as implied by the
piecewise linear solution, it is useful to consider a “naive” piecewise linear solution scheme. Following this naive scheme, in
order to enforce the lower bound in Equation (6), we simply splice the decision rules for two models. The first rule is for a
model that excludes the lower bound at all times. The second rule is for a model that enforces the lower bound at all times.
7 See, for instance Chapter 5 of Blanchard and Fischer (1989).
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As Fig. 1 makes clear, the naive solution matches a linear solution for positive shocks that inflate the asset price. However,
when negative shocks are large enough for the lower bound to be reached, the “naive” solution incorrectly implies that the
constraint will be enforced (and expected to be enforced) forever, only for those expectations to be dashed, even in the
absence of further shocks, once the interest rate eventually rises. Accordingly, the asset price jumps, rising closer to what
would be an implied higher steady state, under the mistaken assumption that the regime will last forever. By contrast, under
the piecewise linear solution produced by OccBin, expectations reflect the duration of the lower bound regime, which avoids
the large discontinuity in the policy function for asset prices. Accordingly, the policy functions retrieved by OccBin are much
closer to the fully nonlinear policy functions from highly accurate projection methods.8

The fully nonlinear policy functions hug the policy functions obtained from our piecewise linear solution, but there are
some small differences. Shocks that move the interest rate close to its lower bound also imply that reaching the lower bound
will be more likely when additional shocks hit the asset pricing equation. This consideration is not incorporated in the policy
functions for the piecewise linear solution. Accordingly, the interest rate and the asset price are slightly lower for large
deflationary shocks under the fully nonlinear solution than under the piecewise linear solution. Of course, just as this
anticipation of future regime switches is absent from the piecewise linear solution, it is also absent from the linear solution
and from the naive solution.

Finally, a further prosaic difference between the piecewise linear solution and the naive splicing of two linear decision
rules is the range of applicable models. The naive splicing can only be implemented when the Blanchard–Kahn conditions
apply separately to all regimes of interest. By contrast, for the piecewise linear solution, those conditions need not hold for
the alternative regime.
8 For the nonlinear solution we approximated the decision rule for the expectation of the asset price with a Chebyshev polynomial of order 6 and
parameterized it with a standard collocation procedure. We approximated the AR(1) process for the shock ut with a Markov process with 51 states.
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3. Related approaches

A recent review of solution algorithms that mitigate the curse of dimensionality, is provided by den Haan et al. (2011)
and references therein. Judd et al. (2012) extend that review by considering methods appropriate for the solution of models
with occasionally binding constraints. They do not dwell on piece-wise linear solutions. We do not attempt to replicate a
comprehensive review of the literature but focus on the connection between the piecewise linear algorithm presented
above and alternative algorithms that ameliorate the curse of dimensionality.

The idea of concatenating decision rules from multiple regimes and shooting back from the last period in which the
reference regime is expected to apply in perpetuity can be traced back to Jung et al. (2005). Their focus is on an economy
subject to the zero lower bound on nominal interest rates. Our formulation of the piecewise linear solution algorithm
applies to any linear model under a general form for the specification of the occasionally binding constraints.

One extension of the basic piecewise linear solution in Jung et al. (2005) is due to Eggertsson and Woodford (2003). They
consider a model with a shock to the natural rate of interest subject to a Markov process with only two states. In one state,
the natural rate is so low that the zero lower bound binds. Under this stark stochastic structure, they compute a rational
expectation solution, instead of a perfect-foresight solution. However, in their model the expected duration of the
alternative regime, i.e. the policy rate at the lower bound, is always fixed at a value determined by the Markov process. By
contrast, in our setup the duration of the alternative regime is dependent on the realization of shocks. In turn, the
expectation of how long a regime is expected to last affects the value of the endogenous variables contemporaneously.

Building on the work of Laséen and Svensson (2009), Holden and Paetz (2012) provide a solution method that allows for
occasionally binding constraints based on introducing anticipated shocks. With a first-order perturbation approach, their
method would produce paths for the endogenous variables identical to the ones of our piece-wise approach.9 The choice of
anticipated shocks that mimic occasionally binding constraints is specific to each model and is not amenable to a general
specification, such as the one achieved for our algorithm.

Upon linearization of the model, an extended path algorithm, as the one proposed by Fair and Taylor (1983) and further
developed by Adjemian and Juillard (2011), would also yield the same path for the endogenous variables as our piecewise
linear algorithm. One advantage of the extended path algorithm is that it can also handle nonlinear perfect-foresight
models, avoiding linearization altogether. However, in practice, convergence of the algorithm may be difficult without a
high-quality initial guess. An advantage of our piecewise linear method is that it greatly simplifies the search process.
Instead of searching for the paths of all the endogenous variables, the piecewise linear algorithm only needs to search for a
sequence of regimes.

The extended path algorithm relies on derivative-based methods to search for a solution. This search is complicated by
the fact that occasionally binding constraints introduce a discontinuity in the derivatives of the conditions for an
equilibrium. Substitution of the kink implied by the occasionally binding constraint with a smooth polynomial approxima-
tion may yield a reformulation of the model more easily amenable to derivative-based solution methods. Our attempts at
pursuing this strategy revealed undesirable side effects. As we increased the order of the polynomial to get a better
approximation to the kink implied by an occasionally binding constraint, the polynomial generated wild oscillations when
moving away from the area immediately surrounding the kink.

An alternative way of masking the discontinuity implied by occasionally binding constraints is offered by McGrattan
(1996), Preston and Roca (2007), and Kim et al. (2010). The insight is to penalize agents' utility when a particular constraint
is hit. While this method has the advantage of converting a model with occasionally binding constraints into a model that is
solvable by perturbation methods, it suffers from undesirable drawbacks. First, the solution will change with the size and
the shape of the penalty (the barrier parameter). Moreover, any high-order perturbation method will generate a smooth
solution that in some instances will violate the inequality constraint.

The remarkable recent work of Judd et al. (2012) also provides a solution algorithm that can handle both a sizable
number of state variables and occasionally binding constraints. Their innovation is to use a simulation-based approach to
construct the approximation grid for projection methods, which ameliorates the curse of dimensionality. However, the
computational burden of this method may remain too high for models oriented towards empirical realism. For instance,
Judd et al. (2012) highlight that a simplified version of the Smets–Wouters model with an added zero lower bound
constraint can be solved in 25 min (with serial processing in Matlab).
4. An RBC model with a constraint on investment

For its simplicity and widespread use, the RBC model is a staple of the literature that has compared the performance of
different solution techniques (see for instance, Taylor and Uhlig, 1990). In our variant of this canonical model, the choice of
investment is subject to an occasionally binding constraint. This constraint prevents investment from falling below an
exogenously fixed lower bound in every period. This exogenous lower bound could be set to imply that investment cannot
be negative. Accordingly, our model nests a model in which capital is irreversible.
9 An explanation for the equivalence of the two approaches and a discussion of their relative merits is provided in the appendices of Bodenstein et al.
(2009, 2013).



Table 1
Baseline calibration of RBC model with a constraint on investment.

Parameter Value

β, Discount factor 0.96
δ, Depreciation rate 0.10
ρ, Persistence of tech. shock 0.90
ϕ, Threshold for investment constraint 0.975
γ, Relative risk aversion 2
α, Capital share 0.33
σ, St. dev. of tech. innovation 0.013
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4.1. Model overview

A central planner maximizes households' utility

max E0 ∑
1

t ¼ 0
βtC

1� γ
t �1
1�γ

;

subject to the constraints in Eqs. (7)–(9) below:

Ctþ It ¼ AtK
α
t�1; ð7Þ

Kt ¼ ð1�δÞKt�1þ It ; ð8Þ

ItZϕISS: ð9Þ
The planner chooses consumption, Ct, investment, It, and capital, Kt. Eq. (7) is the resource constraint and AtK

α
t�1 is the

economy's output in period t. Technology At evolves according to

ln At ¼ ρ ln At�1þσϵt ; ð10Þ
where ρ and σ are parameters and ϵt is an exogenous innovation distributed as standard normal. Eq. (8) is the capital
accumulation equation, with depreciation rate δ. Finally, Eq. (9) is an occasionally binding constraint that prevents
investment from falling below a fraction ϕ of investment in the non-stochastic steady state, denoted by ISS. When the
parameter ϕ equals 0, this last constraint implies that capital is irreversible. In the numerical experiments below, we set ϕ at
a value well above zero which ensures that the constraint binds frequently.

Denoting with λt the Lagrange multiplier on the investment constraint given by (9), the equations describing the
necessary conditions for an equilibrium are (7), (8), and (10) together with the consumption Euler equation and the Kuhn–
Tucker condition for the investment constraint:

C�γ
t �λt ¼ βEtðC�γ

tþ1ð1�δþαAtþ1K
α�1
t Þ�ð1�δÞλtÞ ð11Þ

λtðIt�ϕISSÞ ¼ 0: ð12Þ
These equations form a dynamic system of five equations in the five variables fCt ; It ;Kt ;At ; λtg.

When mapping these conditions into the notation used in Section 2, (M 1) and (M 2) only differ because of one equation
in this case. The complementary slackness condition for the optimization problem implies that λt ¼ 0 when the constraint is
slack. Conversely, when the constraint binds, It ¼ϕISS. The conditions in (M 1) encompass λt ¼ 0 and the function g captures
ItZϕISS. The conditions in (M 2) encompass It ¼ϕISS; and the function hcaptures λt40.

4.2. Calibration and policy functions

Table 1 summarizes the calibration, which reflects a choice of yearly frequency. Most parameter choices are standard. The
risk aversion parameter γ is set to 2: we discuss sensitivity to alternative choices below. We set ϕ¼ 0:975, which implies
that the constraint binds about 40% of the time. We set α¼ 0:33, δ¼ 0:1, and β¼ 0:96. Finally, we set σ ¼ 0:013 and ρ¼ 0:9,
these parameter choices imply a standard deviation of log output around 4 percent.

In the absence of an analytical closed-form solution for the model, we use projection methods and dynamic
programming to characterize a high-quality, fully nonlinear solution.10 The resulting investment function of the full
nonlinear solution is shown in the top panel of Fig. 2. Regardless of the initial level of capital, low realizations of technology
trigger investment (in deviation from its steady state) to hit its lower bound given by �ð1�ϕÞ. The bottom panel compares
the nonlinear solution to the piecewise solution obtained using our method. Given our benchmark calibration, investment is
slightly lower under the piecewise solution when the irreversibility constraint does not bind. The higher level of investment
10 A detailed description of the algorithms for the fully nonlinear solution is given in Section A of the online appendix.
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in the nonlinear solution comes from the effect of uncertainty on precautionary saving. However, the policy functions are
remarkably close.
4.3. Assessing performance: impulse responses and moments

The transitional dynamics are illustrated in Fig. 3, which shows responses of the model variables to two shocks to
technology, the term ϵt in Eq. (10). The sizes of the two shocks are symmetric around the steady state. The first shock brings
down the level of technology by 4 percent (close to a 3 standard deviation shock). The second shock pushes up the level of
technology by 4 percent. For ease of comparison, responses to the first shock are shown on the left-hand side of the figure,
and responses to the second shock on the right-hand side. In each column, the solid lines denote the piecewise linear
solution, the dashed lines denote the dynamic programming solution, and the dash-dotted lines denote the first-order
perturbation solution.

The decline in technology leads to a decline in investment large enough for the investment constraint to bind. The
responses obtained from the piecewise linear and the full nonlinear solutions are strikingly close. As investment cannot fall
more than 2.5 percent relative to its steady-state value, the drop in consumption is exacerbated relative to a model without
an investment constraint. The first-order perturbation solution ignores the constraint altogether, and the responses from the
first-order solution exhibit a markedly smaller contraction in consumption.

When technology rises, the responses from the three solution methods track each other closely. One difference is that the
full-nonlinear solution implies a slightly higher accumulation of capital, in line with precautionary motives stemming from
the concavity of the utility function. Neither the piecewise linear nor the linear method can capture such precautionary
motives.

Table 2 compares key moments.11 Overall, the moments from the piecewise linear and the nonlinear solution methods 
are strikingly close. The piecewise linear method captures first, second, and third moments of the distribution of key 
variables. In particular, it captures the skewness in the distribution of consumption and investment derived from the 
occasionally binding constraint, which is missed by the first-order perturbation method. Furthermore, the piecewise linear 
method matches closely the frequency with which the constraint binds. Both the piecewise linear and fully nonlinear 
solutions imply that the constraint on investment binds, on average, 38 out of every 100 periods.
11 Santos and Peralta-Alva (2005) show that simulated moments from numerical approximations to dynamic stochastic models converge to their exact
values as the approximation errors of the solutions converge to zero.
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Fig. 3. RBC model with a constraint on investment: An Unexpected Decrease in Technology (left column) and an Unexpected Increase in Technology (right
column). Note: Units on the abscissae denote years. The left-hand-side column shows responses to shock that pushes technology down by 4% (a positive
innovation to the shock process equal to approximately 3 standard deviations). The right-hand-side column shows responses to a shock that pushes
technology up by 4%.
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4.4. Assessing performance: euler residuals

Besides a comparison of moments, it is possible to check the accuracy of the piecewise linear solution in economic terms,
using the bounded rationality metric in Judd (1992). Moving from the Euler equation for consumption, we define the Euler
equation error (expressed as a fraction of units of consumption) as:

errt ¼
�Ctþ λtþEtβ C�γ

tþ1 ð1�δÞþαAtþ1K
α�1
t

� �
�ð1�δÞλtþ1

h in o� 1
γ

Ct
: ð13Þ

When sizing the errors for different solution methods, we use the decision rules for capital implied by each method, coupled
with the full set of nonlinear constraints implied by Eqs. (7)–(9).

Fig. 4 shows Euler equation errors for different levels of technology and different solution methods. The top panel reports
Euler residuals for the piecewise linear method. The middle panel relates to the linear method for the same model without
the constraint on investment. The bottom panel returns to the model with the constraint on investment and reports Euler residuals
for the nonlinear solution.12 All panels report the absolute value of the Euler residuals expressed in logarithmic scale with base 10.



Table 2
A Comparison of key moments: RBC Model with a constraint on investment.

Log investment

Solution method Mean St. dev. Skewness
Nonlinear �1.015 5.2% 1.18
Piecewise linear �1.015 5.3% 1.33
First-order perturbation �1.045 7.45% 0.00

Log consumption

Solution method Mean St. dev. Skewness
Nonlinear 0.152 3.63% �0.22
Piecewise linear 0.152 3.62% �0.23
First-order perturbation 0.149 3.56% 0.03

Correlation between log investment and log consumption

Solution method Correlation
Nonlinear 0.81
Piecewise linear 0.80
First-order perturbation 0.89

Frequency of hitting the constraint (%)

Solution method
Nonlinear 38
Piecewise Linear 38
First-Order Perturbation 0
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Under that scale, the interpretation of a value of, say, �4 is that the Euler error is sized at $1 per $10,000 of consumption. The range
in the abscissae was chosen to encompass most of the mass of the ergodic distribution for capital under the baseline calibration.

For the levels of technology shown, the errors in the top panel stay uniformly below �3 and dip well below �4 for part
of the range of capital. The Euler errors in the middle panel are consistent with results in Aruoba et al. (2006), who also
discuss the performance of the log-linear solution algorithm for the standard RBC model. Strikingly, the Euler residuals for
the piecewise linear algorithm used for the top panel remain of a similar order of magnitude as for the first-order
perturbation method used for the middle panel. In fact, in the case of “Low technology,” the piecewise linear algorithm even
implies smaller solution errors. This finding is not too surprising, since for low values of capital and technology, the
piecewise linear decision rule nearly coincides with the fully nonlinear rule.

The bottom panel of Fig. 4 shows Euler residuals for a fully nonlinear collocation method. The figure confirms that Euler
errors are of an economic negligible magnitude for the fully nonlinear solution, consistent with results presented in
Christiano and Fisher (2000). The contours shown stay well below �6, dropping to around �14 at the collocation nodes.

4.5. Assessing performance: welfare

Intuitively, a superior approximation to the solution of the model should yield a higher level of utility regardless of the initial
conditions. To express the differences in utility implied by the piecewise linear solution and by the fully nonlinear solution, we
focus on the constant proportional increase in consumption, the subsidy rate, that would have to be promised in order to make the
representative agent indifferent between using the inferior piecewise linear decision rule instead of the full nonlinear decision rule.
Denoting with CNL;t and by CPL;t the consumption levels implied by the nonlinear decision rule and by the piecewise linear rule
respectively, we size the accuracy of the piecewise linear decision rule by the subsidy rate τ, where τ is such that

Et ∑
1

t ¼ 0
βtC

1� γ
NL;t �1
1�γ

¼ Et ∑
1

t ¼ 0
βtðCPL;tð1þτÞÞ1� γ�1

1�γ
: ð14Þ

We compute the expected utility of the representative agent implied by the decision rules from the full nonlinear
solution and from the piecewise linear solution. Both decision rules can be expressed in terms of capital and the level of
technology. Then, from the capital accumulation equation, one can back out the level of investment. After enforcing the
occasionally binding investment constraint in Eq. (9), one can compute consumption using the resource constraint. We
obtain the value function from the decision rule using the Howard improvement algorithm as described in Ljungqvist and
Sargent (2004). We find that the value of the subsidy for the baseline parameterization is $1 per about $14,500,000 of
12 An equivalent interpretation of the middle panel of Fig. 4 is that it relates to the piecewise linear solution method for an alternative calibration of the
parameter ϕ, so low as to make the constraint on investment irrelevant.
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consumption. Such a small subsidy implies that the piecewise linear approximation works remarkably well. This statement
can be put in context by contrasting our approximation with a clearly suboptimal rule that always sets the capital stock to its
previous value, so that Kt ¼ Kt�1. In that case, consumption moves in lockstep with movements in technology, and the
welfare cost of not optimizing is orders of magnitude larger, $1 per about $3000 of consumption.

In robustness experiments (expanded on in Section A of the online appendix), we also consider sensitivity with respect
to the choice of the value for two key parameters, the discount factor β and the risk aversion coefficient γ. The welfare cost
of using the piecewise method increases as the discount factor rises, from $1 per about $14,500,000 of consumption in the
baseline to $1 per about $3,000,000 when β¼0.98. We conjecture that in the plain vanilla RBC model the nonlinearities
become more pronounced as the risk free rate becomes lower, thus penalizing linearization in general over a fully nonlinear
solution algorithm. Moreover, the welfare cost of using our piecewise solution method is a non-monotonic function of risk
aversion. In the appendix, we discuss further the intuition for this result, highlighting the subtle, model-specific differences
between our solution method and the fully nonlinear one.

5. A new Keynesian model with the zero lower bound

We consider a textbook version of the New Keynesian model, such as the one described in Galí (2008). For ease of
comparison, the notation and calibration hew closely to the version presented in Fernández-Villaverde et al. (2012), who
also consider the consequences of attaining the zero lower bound on nominal interest rates using fully nonlinear solution
techniques.

In the model, a representative household provides labor (the only input in production) to intermediate firms and
consumes. A continuum of intermediate firms that produce differentiated products subject to monopolistic competition
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adjust their prices according to Calvo-type contracts. The intermediate products are repackaged by competitive final firms. A
government sector consumes part of the final good and sets monetary policy according to a Taylor rule subject to the zero
lower bound.

5.1. Model overview

A representative household chooses consumption and labor streams Ct, Lt, and government bonds Bt to maximize:

max
Ct ;Lt ;Bt

E0 ∑
1

t ¼ 0
∏
t

i ¼ 0
βi

 !
log Ct�ψ

L1þϑ
t

1þϑ

 !
;

where the discount factor βt follows the process

ln βt ¼ ð1�ρÞlog βþρ log βt�1þσϵt : ð15Þ
The term ϵt is an exogenous innovation distributed as standard normal, and σ is the standard deviation of the innovation.
The budget constraint is given by

CtþBt=Pt ¼wtLtþRt�1Bt�1=PtþTtþFt : ð16Þ
For simplicity, we do not describe the full set of Arrow–Debreu securities available to households in addition to the non-
state contingent government bond Bt , which pays the nominal gross interest rate Rt. The price level is Pt. The terms Tt and Ft
represent lump-sum taxes and an aliquot share of the profits/losses of intermediate firms.

Competitive final firms repackage intermediate goods Yit to produce a final good Yt according to Yt ¼ ðR 10 Y ðϵ�1Þ=ϵ
it Þϵ=ðϵ�1Þ.

Profit maximization yields the demand schedule Yit ¼ ðPit=PtÞ�ϵYt for each intermediate variety, where Pit is the price of
variety i. Taking the demand from final firms as given, intermediate firms choose their price to maximize profits, subject to
Calvo-type restrictions. Each period, a fraction 1�θ of firms is selected to re-optimize its price (while all other firms keep
the old price). The firms selected solve:

max
Pit

Et ∑
1

τ ¼ 0
θτ ∏

τ

i ¼ 0

 !
λtþτ

λt
Pit

Ptþ τ
�mctþ τ

� �
Pit

Pt

� ��ϵ

Yt ; ð17Þ

where λt is the Lagrangian multiplier on the household's budget constraint for period t and mct is the real marginal cost of
production. Given that the production technology is Yit ¼ Lit , the term mct equals the wage rate wt.

The government budget is balanced every period (Bt ¼ 0 8t), and spending is financed by lump sum taxes Tt. Government
spending is a constant share of aggregate output, given by Gt ¼ sgYt . Monetary policy is implemented as follows:

Zt ¼ R
Πt

Π

� �ϕπ Yt

Y

� �ϕy

ð18Þ

Rt ¼maxðZt ;1Þ ð19Þ
where Zt is the notional policy rate and Rt is the actual policy rate, both expressed in gross terms. The term Πt is defined as
Pt=ðPt�1Þ. Eq. (18) is a Taylor-type rule for setting the interest rate Zt . Eq. (19) is the occasionally binding constraint stating
that the actual policy rate cannot fall below 1. Above, Π is the steady-state target level of inflation, R is the steady-state
nominal gross return of bonds (equal to Π divided by β), and Y is steady-state output.

For reasons of space, we only emphasize key conditions for an equilibrium. In particular, the conditions that involve
intertemporal terms are of special interest because the fully nonlinear collocation solution is obtained by parameterizing the
expectations of future variables. For completeness, Section B of the online appendix lists all the necessary conditions for an
equilibrium and describes the collocation method used to obtain the fully nonlinear solution.

Following Yun (2005), aggregate supply Yt can be shown to be equal to:

Yt ¼ Lt=vt ð20Þ
where vt is a measure of price dispersion for intermediate producers equal to vt ¼

R 1
0 ðPit=PtÞ�ϵdi. In turn, the evolution of

dispersion is a state variable given by

vt ¼ θΠϵ
t vt�1þð1�θÞðΠn

t Þϵ: ð21Þ
The term Πn

t is defined as Pn

t =Pt , where Pn

t is the price selected by firms that can re-optimize in period t.
The remaining intertemporal conditions involve expectations: the Euler equation for consumption

1
Ct

¼ Et βt
1

Ctþ1

Rt

Πtþ1

� �
; ð22Þ

and two additional equations that are obtained from the profit maximization problem for intermediate firms and that
involve two auxiliary variables x1t and x2t

x1t ¼mctYt=CtþθEtβtΠ
ϵ
tþ1x1tþ1; ð23Þ



Table 3
Baseline calibration of New Keynesian model subject to the zero lower bound.

Parameter Value

β, Discount factor 0.994
θ, Calvo parameter 0.90
ϕy , Response to output, Mon. Pol. Rule 0.25
ϕπ , Response to inflation, Mon. Pol. Rule 2.5
ρ, Persistence of discount rate shock 0.80
ε, Elasticity of substitution across goods 6
g, Steady-state ratio of G=Y 0.20
Π, Steady state inflation 1.005
ϕ, Labor supply elasticity 1
σ, St. dev. of discount rate shock 0.005
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Fig. 5. New Keynesian model subject to the zero lower bound: an Unexpected Increase in the Discount Factor (left column) and Unexpected Decrease in
the Discount Factor (right column). Note: Units on the abscissae denote quarters. The left-hand-side column shows responses to a shock that occurs in
period 6 and brings β up to 1.019 (a positive innovation to the shock process equal to 4 standard deviations). The right-hand-side column shows responses
to a shock that brings β down to 0.969 (a negative innovation to the shock process equal to 4 standard deviations).
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x2t ¼Πn

t Yt=CtþθEtβtΠ
ϵ�1
tþ1Π

n

t x2tþ1=Π
n

tþ1: ð24Þ

To map the conditions for an equilibrium into the notation used in Section 2, one only needs to recognize that, again,
(M 1) and (M 2) only differ because of one equation to capture the max operator in Eq. (19). The set of conditions under
(M 1)encompasses Rt¼Zt, implying that the actual and notional interest rates coincide. The set of conditions under (M 2)
encompasses Rt¼1, implying a gap between the actual and notional interest rates. The function hð�Þ is defined as �Rtþ1;
hence, when the system under (M 1) implies that Rto1, the set of conditions under (M 2) applies, ensuring the actual gross
interest rate cannot fall below 1. Furthermore, the function gð�Þ is defined as �Ztþ1; hence, when ZtZ1 the set of
conditions under (M 1) applies, implying that actual and notional rates coincide only when the gross notional rate is at or
above 1.
5.2. Calibration

The calibration is summarized in Table 3. The parameters reflect a choice of quarterly frequency. We follow closely the
standard choices in Fernández-Villaverde et al. (2012), but we adapt them to reflect that we simplified the stochastic
structure of the model. They consider an array of shocks, while we focus only on shocks to the discount factor βt, which are
often used to bring the model to the zero lower bound in stylized New Keynesian settings, see for instance Christiano et al.
(2011). We increase σ, the standard deviation for this shock, from 0.0025 to 0.005 and choose its persistence ρ to be 0.8. The
steady state discount factor β is 0.994. With an annual inflation rate of 2 percent (Π ¼ 1:005), the steady-state yearly
nominal interest rate is 4.4%. With this choice and the larger discount factor shock, the model attains the zero lower bound
with an empirically realistic frequency in the 5 to 10 percent range. Another departure from the calibration in Fernández-
Villaverde et al. (2012) pertains θ, the probability that an intermediate firm will have to keep its price unchanged. To curb
the volatility of inflation with a nod to empirical realism, we push this parameter from 0.75 to 0.9. This change, in
conjunction with an interest rate rule that responds aggressively to inflation, with a coefficient ϕπ set at 2.5, prevents large
disinflations from occurring at the zero lower bound, in line with recent U.S. experience.
5.3. Assessing performance: impulse responses, moments, and euler residuals

Fig. 5 shows the responses to two unexpected shocks to the discount factor, ϵt in Eq. (15). The sizes of the two
innovations considered are symmetric around the steady state. The left-hand side column shows responses to a shock that
brings β up to 1.019 (a positive innovation to the shock process equal to 4 standard deviations). The right-hand side column
shows responses to a shock that brings β down to 0.969. The figure compares the response of the model as implied by three
solution methods, the piecewise linear method implemented with OccBin, a fully nonlinear collocation solution, and a first
order perturbation that disregards the zero lower bound. The responses implied by the piecewise linear and the nonlinear
solution lie close to each other, especially for the shock that reduces the discount factor. The differences are more
pronounced for the shock that pushes β up. In response to this first shock, the nonlinear solution implies a spell at the zero
lower bound lasting 4 periods; the path of the policy rate implied by the piecewise linear solution lifts off one quarter early.
The contraction in output and inflation implied by the nonlinear solution when the zero lower bound is attained are both a
tad larger relative to the paths for the piecewise linear solution. By contrast the differences relative to the linear solution
that ignores the lower bound are dramatic. The trough of the output response is close to �4% for the linear solution and
�6% for the piecewise linear and the nonlinear solutions, in other words, the output responses differ by almost 50% for the
shock considered.

The differences highlighted in Fig. 5 are also reflected in the comparison of moments in Table 4. Overall, the key
moments obtained with the full nonlinear solution method line up well with those from the piecewise linear solution, both
at the ZLB and away from it. One notable difference is that, under the collocation solution, the ZLB hits more frequently on
average (7 against 4 percent) and the volatility of output is slightly larger.

There are two main forces shaping the differences between the solution produced by OccBin and the nonlinear solution:
an uncertainty effect, and a price dispersion effect. These effects can reinforce or offset each other in ways that depend on
the calibration, on the size of the shock considered, and on the linearization point.

The uncertainty effect implies that negative shocks at the ZLB produce larger contractions than away from it, since
monetary policy is unable to offset them. In turn, the expectation of negative shocks when already at the ZLB further
reduces prices and output, since agents expect that monetary policy will be unable to accommodate these shocks. As a
consequence, when uncertainty is explicitly taken into account, the ZLB hits more frequently, policy is more accommodative,
and output is more skewed to the left. The uncertainty effects imply larger responses at the ZLB than captured by the
piecewise linear solution method, which ignores uncertainty. This effect has been highlighted by Nakata (2013), among
others.

Even when uncertainty is ruled out, the piecewise solution may overstate or understate the response of price dispersion
due to nonlinearities. These nonlinearities can be important especially for large shocks that take output close to the ZLB, as
highlighted by Braun andWaki (2010). In our application, the size and direction of the misses are a function of the size of the



Table 4
A comparison of key moments: New Keynesian model subject to the zero lower bound.

Piecewise linear Nonlinear Linear

Frequency of Hitting ZLB 4.2% 7.13%
Means
Interest Rate (AR) 4.43% 4.16% 4.39%
Inflation (AR) 1.99% 1.77% 1.99%
Log output 0.0125 0.0144 0.0126
Shock innovation 0.00% 0.00% 0.00%
Standard deviations
Interest rate (AR) 2.44% 2.51% 2.52%
Inflation (AR) 0.45% 0.52% 0.45%
Log output 1.44% 1.54% 1.41%
Log price dispersion 0.33% 0.31% 0.32%
Skewness
Log output �0.22 �0.49 �0.04
Interest Rate 0.16 0.17 �0.02
Moments, conditional on ZLB
Mean inflation (AR) 1.03% 0.69%
Mean log output �0.0206 �0.0189
Mean, shock innovation 1.15% 0.99%
St. dev., inflation (AR) 0.19% 0.29%
St. dev. log output 0.85% 1.05%

Note: “AR” stands for “Annualized Rate.”

L. Guerrieri, M. Iacoviello / Journal of Monetary Economics 70 (2015) 22–3836
shock, since price dispersion is a U-shaped function of inflation.13 As implied by Equation (20), aggregate supply is
negatively related to dispersion, as high dispersion implies that a few firms, stuck with lower prices, are inefficiently
capturing a disproportionate fraction of aggregate demand. In the example of Fig. 5, price dispersion drops more in the
nonlinear solution, temporarily reducing the inefficiency and cushioning the drop in output relative to the piecewise linear
solution. This effect partly offsets the miss related to the uncertainty effect.14

Given that the uncertainty and price dispersion effects may offset or reinforce each other, it is especially important to
assess the performance of the piecewise linear method for different calibrations, as well as across a wide range of values for
dispersion and for different values of the shock process βt. Fig. 6 shows Euler equation errors for the baseline calibration,
expressed as a share of consumption as for the previous model considered. The figure shows errors for three shock sizes:
“Median Beta” corresponding to βt ¼ 0:994; “Low Beta” corresponding to βt ¼ 0:965; “High Beta” corresponding to
βt ¼ 1:023.15 We find it remarkable that, at worst, the Euler errors stay close to $1 per $1000 of consumption for extreme
values of dispersion even when the zero lower bound binds. As shown in the middle panel of the figure, this magnitude is
similar to the misses for first-order perturbation solution of a model that disregards the zero lower bound. The bottom panel
confirms that the Euler errors are of an economically negligible magnitude for the fully nonlinear solution.

Additional robustness checks can be found in Table B of the online appendix, where we compare key moments for
different calibrations of the model that focus on varying the monetary policy rule and steady-state inflation. We find that
the piecewise linear model continues to perform adequately: if anything, across experiments, it tends to always
underestimate the frequency of ZLB episodes and the volatility of output.

We conclude our discussion of the New Keynesian model with a word of caution: while the range of parameter values for
which we can solve and find a unique solution for the piecewise linear model is extensive, our numerical routines for the
fully nonlinear solution encountered convergence problems for very persistent shocks, for low values of the price rigidity,
and for monetary policy rules with a small inflation response. We conjecture – as many others have already done – that the
New Keynesian model might be afflicted by several pathologies near the zero lower bound that can make the identification
of global solutions especially challenging. These issues have been analyzed and discussed by, among others, Benhabib et al.
(2001), Braun and Waki (2010), and Aruoba and Schorfheide (2013). These pathologies seem to afflict the New Keynesian
model in particular and are not a general feature of all models with occasionally binding constraints.
13 For the linear and piecewise linear solutions considered, we linearize around a non-zero inflation rate. Perturbation solutions around a zero inflation
point would imply that price dispersion is constant. In that special case, dispersion entirely drops out of the linearized set of conditions for an equilibrium.
See Schmitt-Grohe and Uribe (2007) for a discussion of dispersion in a New Keynesian model. See also Figures A and B in Section B of the online appendix.

14 In a general equilibrium setting, the response of dispersion is also influenced by precautionary motives. We confirmed that the piecewise linear
solution understates the decrease in dispersion in response to the increase in the discount factor shown in Fig. 5 by checking a nonlinear solution under
perfect foresight.

15 For this model, there are three intertemporal errors associated with Eqs. (22)–(24), respectively. The errors for (23) and (24) have magnitude and
patterns similar to those of the Euler equation errors, as is shown in Section B of the online appendix.
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Fig. 6. New Keynesian model subject to the zero lower bound: Comparison of Euler equation residuals across solution methods (residuals expressed as a
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open circle indicates that the zero lower bound on the nominal interest rate is binding.
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6. Conclusion

We presented a simple piecewise linear solution method that allows one to solve models with occasionally binding
constraints easily. This solution method has three principal advantages: (1) It is applicable to models with a large number of
state variables. (2) It is a general-purpose algorithm whose deployment is standardized across models and requires only
modest additional programming. (3) The computational burden is small, resulting in a short solution time.

As documented, the deterioration in the solution quality from the adoption of the piecewise linear algorithm may vary
model by model. For instance, the piecewise linear algorithm may be ill-suited if precautionary considerations are a crucial
element of the model to be solved. We considered two different workhorse models to showcase the applicability of the
piecewise linear solution. In the RBC model with a constraint on the mobility of capital, the deterioration in the solution
quality from disregarding precautionary motives turned out to be negligible. Precautionary motives at the zero lower bound
on nominal interest rates caused the piecewise linear solution to slightly underpredict the frequency at which the lower
bound is attained.

For simple models for which more accurate solution methods are viable, the piecewise linear algorithm can provide an
initial guess and a useful “sanity check.” The deployment costs of our algorithm are minimal, since it can be implemented
generally once and for all. We demonstrated a general implementation in the accompanying library of routines. In our
experience, we have found general-purpose algorithms especially useful at the experimentation phase of research, when the
model of interest can undergo radical changes requiring, otherwise, costly dedicated programming.

For larger models, the inclusion of empirically realistic features into a model can quickly strain the performance and
applicability of other solution methods that handle occasionally binding constraints. Under those circumstances, our
algorithm provides an alternative to swallowing unpalatable simplifications to the model of interest.
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