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Course overview

We will discuss broad topics

� Solving DSGE models, with particular attention to their nonlinearities
� Estimating DSGE models with OBC
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DSGE Models: The Simplest Example

RBC Model with zero Capital Depreciation and Fixed Labor Supply
The planner’s problem can be written as:

max Et

 
∞

∑
s=t

βs�t log Cs

!

subject to
Kt � Kt�1 = A1�α

t Kα
t�1 � Ct (1)

Optimal consumption implies

1
Ct
= βEt

 
1

Ct+1

 
α

�
At+1

Kt

�1�α

+ 1

!!
(2)

Assume technology follows an AR(1) process in logs, that is

log At = ρ log At�1 + log ut (3)

where ρ is the autocorrelation of the shock. log u has mean zero, finite variance.
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Solution with Linearization

The system made by (1) to (3) is a non-linear system with rational expectations.
We usually solve them in the following steps

� Find the steady state.

log A = 0� > A = 1

C = Kα

1� β = αβ

�
1
K

�1�α

� >
�

αβ

1� β

� 1
1�α

= K



1. DSGE 2. occbin 3. Occbin app 4. Estimation with OccBin 5. Linear Estimation

� Linearize model equations around the steady state, letting xt � Xt�XSS
XSS

equation 1
Ct = A1�α

t Kα
t�1 � Kt + Kt�1

log Ct = log
�

A1�α
t Kα

t�1 � Kt + Kt�1

�
take total differential around steady state

1
C

dCt =
1
C

�
(1� α)A�αKαdAt + αA1�αKα�1dKt�1 � dKt + dKt�1

�
ct = (1� α) at + αkt�1 �

K
C

kt +
K
C

kt�1
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� equation 2

Et

�
Ct+1

Ct

�
= βEt

 
α

�
At+1

Kt

�1�α

+ 1

!
steady state of both sides is 1

Etct+1 � ct = α (1� α)

�
1
K

�1�α

(Etat+1 � kt)

0 = �Etct+1 + ct +
(1� α) (1� β)

β
(Etat+1 � kt)

� equation 3
at = ρat�1 + ut
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Taking Stock

This is a dynamic system of 3 equations in 3 unknowns. To use a more compact
notation, we prefer to write it in the following form

0 = Et [Fxt+1 +Gxt +Hxt�1 + Lzt+1 +Mzt] (4)

zt = Nzt�1 + et (5)

where

� xt is the vector collecting all the endogenous variables of the model.
� zt collects all the exogenous stochastic processes.

In our above example

x =
�

c
k

�
, z = [a]

and F =
�

0 0
�1 0

�
, G =

24 �1 � αβ
1�β

1 � (1�α)(1�β)
β

35 , H =

�
0 α

1�β

0 0

�
,

L =

"
0

(1�α)(1�β)
β

#
, M =

�
1� α

0

�
, N = [ρ]
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To summarize, a linearized DSGE model can be written in the following form

0 = Et [Fxt+1 +Gxt +Hxt�1 + Lut+1 +Mut]

zt = Nzt�1 + et

The recursive equilibrium law of motion describes endogenous variables as
function of the state:

xt = Pxt�1 +Qzt (6)

i.e., matrices P, Q such that the equilibrium is described by these rules.

� Finally, what we do is to plug the matrices in (4) and (5) in a computer, to
obtain (6) .

In our toy example above, set α = 0.33, β = 0.99, ρ = 0.98. Then (from runrbc.m)�
ct
kt

�
=

�
0 0.6589
0 0.9899

� �
ct�1
kt�1

�
+

�
0.1755
0.0151

�
[zt]



1. DSGE 2. occbin 3. Occbin app 4. Estimation with OccBin 5. Linear Estimation

Practice.
Let problem for planner be: max Et

�
∑∞

s=t βs�t (log Cs + τ log (1� Lt))
�

subject to Kt � Kt�1 = A1�α
t Kα

t�1L1�α
t � Ct

let τ = 1.

1. Derive planner’s first order conditions.

2. Find analytical steady state.

3. Solve for decision rules of the form xt = Pxt�1 +Qzt.

4. Compare coefficients of P and Q with the ones obtained in the model with
fixed labor supply.
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Solving Models with Occasionally Binding Constraints

Occasionally binding constraints arise in many economic applications. Examples
include:
Models with limitations on the mobility of factors of production;

Models with heterogenous agents and constraints on the financial assets available
to agents;

Models with a zero lower bound on the nominal interest rate;

Models with inventory management.
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Why is a Toolkit Needed?

Encompassing realistic features to improve model fit in empirically driven
applications may quickly raise the number of state variables. This may render
standard global solution methods, such as dynamic programming, infeasible.

An alternative that has been used in practice, especially in applications that deal
with the zero lower bound on policy rates, is to use a piece-wise perturbation
approach.

This approach has the distinct advantage of delivering a solution for models with
a large number of state variables. Furthermore, it can be easily extended to
encompass multiple occasionally binding constraints.
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1) Present a toolbox that extends Dynare to use this solution technique.
2) Can gauge performance of this approach relative to other solution methods
(more accurate but slower, for instance).
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The Solution Method

� The linearized system of necessary conditions for an equilibrium of a
baseline DSGE model can be expressed as:

A1EtXt+1 +A0Xt +A�1Xt�1 + But = 0. (M1)

Where Xt are variables in deviation from non-stochastic steady state.
There are situations however (away from ss) when one (or more) of the
equilibrium conditions may not hold, and is replaced by another one. When
the "starred" system applies, express the system as:

A�1EtXt+1 +A�0Xt +A��1Xt�1 + B�ut + C� = 0 (M2)

where C� is a vector of constants.
� Both systems are linearized around the same point – same X across systems.
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The Solution Method

� When the baseline model applies (M1), we use standard methods to express
solution as:

Xt = PXt�1 +Qut. (M1_DR)

� If the starred model applies (M2), shoot back towards the initial condition
starting from the last period before we return to M1.

� Main idea: suppose that M2 applies in t, but M1 is expected to apply in all
future periods t+ 1, the decision rule in t is:

A�1
M2

PXt
M1_DR

+A�0Xt +A��1Xt�1 + C�
M2

= 0,

Xt = � (A�1P +A�0)
�1 �A��1Xt�1 + B�ut + C�

�
� One can proceed in a similar fashion to construct the time-varying decision

rules when M2 applies for multiple periods.
� In each period in which M2 applies, the expectation of how long one expects

to stay in M2 affects the value of Xt today
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The Solution Method

The search for the appropriate time-varying decision rules implies that for each
set of shocks at a point in time one needs to calculate the expected future duration
of each "regime."

Truncate the simulation at an arbitrary point and reject the truncation if the
solution implies that the model has not returned to the reference regime by that
point.

Start with a guess of the expected durations that is based on the linear solution.
Update the guess based on where the conditions of system 1 are violated using
the piece-wise linear method until no violation remains.
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An Example

� To fix ideas, let’s first consider a simple, forward-looking, linear model:

qt = β(1� ρ)Etqt+1 + ρqt�1 � σrt + ut

rt = max (r, φqt)

where ut is an iid shock.
� The general solution for qt takes the form

qt = εqq,tqt�1 + εqu,tut + cq,t

rt = εrr,tqt�1 + εru,tut + cr,t

� In turn, the ε are functions of qt�1 and ut.
� How do we find the solution?
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An Example: Solution ignoring the constraint

Ignore the constraint first

qt =
β (1� ρ)

1+ σφ
Etqt+1 +

ρ

1+ σφ
qt�1 +

1
1+ σφ

ut

qt = aEtqt+1 + bqt�1 + cut

Find solution (method of undetermined coefficients)

qt = εqqt�1 + εuut (guess)

Etqt+1 = εqqt (expectation given guess)

aEtqt+1 = aεqqt = aε2
qqt�1 + aεqεuut

Match coefficients

eqt�1 + εuut
qt

= aε2
qqt�1 + aεqεuut

aEtqt+1

+ bqt�1 + cut

so that (after picking the “stable” root)

εq = aε2
q + b, εu = aεqεu + c

εq =
�

1�
p

1� 4ab
�

/2a, εu = c/
�
1� aεq

�
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Plug some numbers

β = 0.99

φ = 1

ρ = 0.5

σ = 1

r = �0.02

In this case (see runsimmodelsimple.m)

εq = 0.2677

εu = 0.5355

so that
qt = rt = 0.2677qt�1 + 0.5355ut
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Is this solution always correct? Consider the case of a large negative shock to u in
period 1. If q0 = 0, any ut such that

r� = 0.5355u� < �0.02

u� < �0.0373

will violate constraint.
Suppose for instance u1 = �0.2. Ignoring constraint, solution is

rt = 0.2677rt�1 + 0.5355ut

r1 = �0.5355 � 0.2 = �0.1071

r2 = 0.2677r1 = �0.0287

r3 > �0.02

Hence ignoring the constraint rt would be below �0.02 for 2 periods. Moreover,
there is a feedback loop. Higher values of r imply lower q, which implies lower
desired values of r, so r can end up being at r for longer
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We use a guess and verify method to determine how long the constraint will
bind. We start by guessing durations that are based on the linear solution that
ignores the constraint. Iterate until convergence.

So the first guess is going to be 2 periods.

–> Suppose we guess that r remains at φ for t_low = 2 periods.
–> Because r is not going to be low as guessed in linear solution ....
–> q will fall more than if r did not hit the constraint ...
–> and r might in turn stay at its lowest bound φ more than t_low periods.

In all interesting cases, first guess is not last guess, since dynamics of system
depend on feedback loop between duration of constraint and endogenous
reaction of variables to constraint. In the example above, one can think of a New
Keynesian model at the ZLB.
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Now cast system using our general notation (use β0 = β (1� ρ)):

qt = β0Etqt+1 + ρqt�1 � σrt + ut

rt = max (r, φqt)

A1EtXt+1 +A0Xt +A�1Xt�1 + But = 0. (M1)�
�β0 0

0 0

� �
q1
r1

�
+

�
1 σ
�φ 1

� �
q
r

�
+

�
�ρ 0
0 0

� �
ql
rl

�
+

�
�1
0

�
u =

�
0
0

�
and

A�1EtXt+1 +A�0Xt +A��1Xt�1 + B�ut = �C� (M2)�
�β0 0

0 0

� �
q1
r1

�
+

�
1 σ
0 1

� �
q
r

�
+

�
�ρ 0
0 0

� �
ql
rl

�
+

�
�1
0

�
u =

�
0
r

�
and

Xt = PXt�1 +Qut (M1_DR)�
qt
rt

�
=

�
εq 0
εq 0

� �
qt�1
rt�1

�
+

�
εu
εu

�
u
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We guess that in t=3 normal system applies. Hence need to find solution in t=1, 2,
given the shock taking place in period 1, and knowing X0. In that case, the
solution in t=2 should satisfy

X2 = � (A�1P +A�0)
�1 �A��1X1 + B�u2 + C�

�
= P2X1 +Q2u2 + C2

where

P2 = � (A�1P +A�0)
�1A��1,

Q2 = � (A�1P +A�0)
�1 B�u2, C2 = � (A�1P +A�0)

�1 C�

I plug the numbers now. Using

A�1 =

�
�0.495 0

0 0

�
,P =

�
0.2677 0
0.2677 0

�
,A�0 =

�
1 1
0 1

�
B� =

�
�1
0

�
, C� =

�
0

0.02

�
I get

X2 =

�
0.5706 0

0 0

�
P2

X1 +

�
.023
�0.02

�
C2
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We do not know yet X1 the solution in period 1. Assuming (M2) applies in t = 1
and is expected to apply in t = 2, the solution in 1 is

A�1 (P2X1 + C2) +A�0X1 +A��1X0 + Bu1 + C� = 0,

X1 = � (A�1P2 +A�0)
�1 �B�u1 + C� +A�1C2 +A��1X0

�
X1 = P1X0 +Q1u1 + C1

where

P1 = � (A�1P2 +A�0)
�1 A��1

Q1 = � (A�1P2 +A�0)
�1 B�

C1 = � (A�1P2 +A�0)
�1 (C� +A�1C2)

After plugging in all the numbers, assuming X0 = 0, we get

X1 =

�
�0.235 00
�0.02

�
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So far we went backwards from the last period in which regime 2 applies to the
first.
Now we go forward. Plug X1 back into solution for X2 and get

X2 =

�
0.570 64 0

0 0

� �
�0.235 00
�0.02

�
+

�
.023
�0.02

�
=

�
�0.111 1
�0.02

�
and now plug X2 into X3

X3 = PX2

X3 =

�
�0.0297
�0.0297

�
which violates constraint in 3.
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� Note the need to update guess.
� We guessed that starred system (M2) applies in 1 and 2 and that the normal

applies in 3. Based on this guess, the starred system applies in 3.
� Hence we update the guess that starred system applies for 3 periods.
� Redo the whole thing again until the guessed duration in the starred regime

coincides with the actual duration.

In the next step, we assume that the normal system applies in 4 but the starred
applies in 1, 2 and 3, solve for P3, Q3 and C3, use them to compute X2 and X1, and
go back to see if X3 satisfies the constraints (it does, I have checked it myself)
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Impulse Responses to a u1 = �0.2 shock
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Example 1: Borrowing Constraint Model

� To check if method is accurate, we apply it to models for which we can
compute a a full non-linear solution to arbitrary precision using dynamic
programming methods.

� Random endowment yt can be used as collateral

u = E0

n
∑∞

t=0 βt log (ct)
o

ct = yt + bt � 1.05bt�1

bt � 2yt (c1)

log (yt) = ρ log (yt�1) + σ
q

1� ρ2εt

εt˜N (0, 1) , σ = 0.03, ρ = 0.9

� We look at how solution method handles cases when increases in yt are large
enough so that constraint is not binding. We try β = 0.94 and β = 0.949

� Here: constraint (c1) BINDS in normal times.
� Examples:runsim_borrcon_test1_compare_linear.m and

runsim_borrcon_test1_compare_global.m in the folder borrcon_global
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Example 2: RBC with Irreversible Capital

� Investment cannot fall below a given threshold

u = E0

n
∑∞

t=0 0.96t log (ct)
o

ct + kt � 0.9kt�1 = Atk0.33
t�1

kt � 0.9kt�1 � φkt�1 (c2)

log (At) = 0.9 log (At�1) + σ
q

1� ρ2εt

εt˜N (0, 1) , σ = 0.03, ρ = 0.9

where φ > 0.
� Here: constraint (c2) DOES NOT bind in normal times.
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Example 3: Borrowing and Housing

U = E0

∞

∑
t=0

βt (log ct + j log ht)

ct + qtht = y+ bt � Rbt�1 + qtht�1 (1� δ)

bt � mqtht

log qt = ρ log qt�1 + υt

Here the FOCs would be

µt (bt �mqtht) = 0

u0 (ct) = βREtu0 (ct+1) + µt

qtu0 (ct) = u0 (ht) + β (1� δ)Etqt+1u0 (ct+1) + µtmqt

Assuming βR < 1, here the borrowing constraint binds in normal times.
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Structure of Solution Programs (Dynare)

The programs we devised take as input two Dynare model files.
One .mod file specifies the normal M1 model from which we calculate

A1EtXt+1 +A0Xt +A�1Xt�1 = 0.

The other .mod file specifies the starred model M2 with the occasionally binding
constraint inverted (binding if it was not binding in the reference model, or not
binding if it was binding in the reference model). This .mod file yields

A�1EtXt+1 +A�0Xt +A��1Xt�1 + C� = 0.

We use the analytical derivatives computed by Dynare to construct
A1, A0, A�1, A�1 , A�0 , A��1, and C�.
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M1: hp.mod
y=1;
c+q*h=y+b-R*b(-1)+q*h(-1)*(1-δ);
b=M*q*h;
lb=1/c-β*R/c(+1);
q/c=j/h+β*(1-δ)*q(+1)/c(+1)+lb*M*q;
lev=b/(M*q*h)-1;
log(q)=ρ*log(q(-1))+u;

M2: hpnotbinding.mod
y=1;
c+q*h=y+b-R*b(-1)+q*h(-1)*(1-δ);
lb=0;
lb=1/c-β*R/c(+1));
q/c=j/h+β*(1-δ)*q(+1)/c(+1)+lb*M*q;
lev=b/(M*q*h)-1;
log(q)=ρ*log(q(-1))+u;

The main file runsim_hp.m contains

1. mod files: model1 = �hp�; model2 = �hpnotbinding�;

2. constraint violation triggers switch to m2: constraint=�lb<-lb_ss�;

3. constraint violation triggers switch to m1: constraint_relax1=�lev>0�

4. solve model1 to obtain M1_DR; write model2 in M2 form

5. given shocks, check if model1 assumptions are violated, if so, look for
solution
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function [zdata zdataconcatenated oobase_ Mbase_] = ...
solve_one_constraint(model1,model2,...
constraint, constraint_relax,...
shockssequence,irfshock,nperiods,maxiter)

� model1, model2: dynare mod files containing (linear or nonlinear) model
equations

� constraint, constraint_relax: strings with constraints that have to be
verified
constraint defines the first constraint
if constraint is true, solution switches to model2
but if constraint_relax is true, solution reverts to model1

� shockssequence: sequence of innovations under which one wants
to solve model
e.g. randn(100,1)*σj for simulation
or [ 1; zeros(50,1) ] for impulse responses
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Simulations - Borrowing and Housing Model
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IRF - Borrowing and Housing Model
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Accuracy – Borrowing and Housing Model

Log Consumption Correlations b
qh ∆Welf.

st.dv skewness ln q, ln c ln q, b
qh mean

Linear 6.1% 0.03 0.40 0.00 0.925 0.18%
Occbin 4.5% -1.17 0.54 -0.60 0.911 0.02%

Nonlin.perf.fores. 4.6% -1.20 0.53 -0.58 0.910 0.01%
Nonlinear stoch. 3.7% -1.30 0.65 -0.71 0.896 —
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Nonlinear models

Nonlinear structural models can be described by:

1. The model’s equilibrium conditions and FOCs

Γ (Etzt+1, zt, zt�1, εt) = 0

where zt includes st and ct, “states” and “controls”.
Etzt+1 is an unknown object!

2. The solution is a set of policy functions ζ

zt = ζ (zt�1, εt)

such that, for any value of (zt�1, εt)

F (zt�1, εt) � Γ (Etζ (zt, εt+1) , ζ (zt�1, εt) , zt�1, εt) = 0
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One Example

� Example of DSGE model we want to solve:

C�γ
t = βδtRtEt

�
C�γ

t+1/Πt+1

�
(1)

wt = Nη
t Cγ

t (2)

Nt

Cγ
t
(ψ (Πt � 1)Πt � (1� θ)� θwt) = βδtEt

 
Nt+1

Cγ
t+1

ψ (Πt+1 � 1)Πt+1

!
(3)

Nt = Ct +
ψ

2
(Πt � 1)2 Nt (4)

Rt = max
�

1, Πφ
t /β

�
(5)

� Solution is a set of policy functions
Ct = C (δt) , Rt = R (δt) , wt = w (δt) , Πt = Π (δt) , Nt = N (δt) such that (1)
to (5) hold for every value of δt.
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Computing the Likelihood

� Assume we solve the model using Occbin. Model solution is:

Xt = P(Xt�1, εt)Xt�1 +D(Xt�1, εt) +Q(Xt�1, εt)εt

� In terms of observables, through observation equation Yt = HXt,:

Yt = HP(Xt�1, εt)Xt�1 +HD(Xt�1, εt) +HQ(Xt�1, εt)εt

� We initialize X0 and recursively solve for εt, given Xt�1 and current Yt.
� Given that εt is NID(0, Σ), a change in variables argument implies that the

log likelihood l for YT � fYtgT
t=1 given parameters can be derived

analytically as:

l = �T
2

log(det Σ)� 1
2

T

∑
t=1

ε0tΣ
�1εt +

T

∑
t=1

log(jdet
∂εt
∂Yt

j)

� where ∂εt
∂Yt

= inv (HQt) is the Jacobian matrix of the transformation from the
shocks to the observations
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Intuition

� The key to compute the likelihood is to make sure that we can invert the
policy functions for Yt

� There is a long tradition in science dealing with the so-called inverse problem :
the process of calculating from a set of observations the causal factors that
produced them.

� Kollmann (2017) calls this procedure inversion filter (IF)
� This is different from Particle filters (PFs), which use Monte Carlo methods

to infer latent states (An and Schorfheide (2007)), and are thus
computationally slow.

� The Inversion filter is fast as it does not involve computing moments of
states.

� One drawback: PFs can be used when there are less observables than shocks.



1. DSGE 2. occbin 3. Occbin app 4. Estimation with OccBin 5. Linear Estimation

Performance of the Filter 1

Based on ongoing work with Guerrieri, Pablo Cuba Borda and Molin Zhong

� Consider Example 1: borrowing constraints model
� Generate data of T = 100 from fully nonlinear model with parameter values

γ = 1, σ = 0.01, R = 1.05, β = 0.945, ρ = 0.9, m = 1.
� Fit the model using consumption as the only observable

� with the occbin/inversion filter in JME 2017 paper....
� ... and the kalman filter (assuming that the borrowing constraint is always

binding).

� Next figure shows model variables. C and b are in deviations from ss. λ in
levels.
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Performance of the Filter

� Occbin filter does well in terms of extracting out the latent states (debt,
lagrange multiplier, and shocks).

� The Kalman filter does a bit worse, especially in time periods in which the
constraint is binding.

� The occbin solution method + filter does pretty well on data generated from
the fully nonlinear model. By neglecting completely the occasionally binding
constraint, however, the filtering of the states is affected.



1. DSGE 2. occbin 3. Occbin app 4. Estimation with OccBin 5. Linear Estimation



1. DSGE 2. occbin 3. Occbin app 4. Estimation with OccBin 5. Linear Estimation

Performance of the Filter 2

� Next Figure shows log likelihood cut of γ.
� Here, vary the values of γ on grid between 0 to 2 (true γ is 1) while keeping

all other parameter values at their true values.
� See how the likelihood changes.
� Neglecting occasionally binding constraint (kalman filter case) makes

inference about γ impossible with just C as observable, because constraint is
always binding.
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Application to ZLB: the linearized CGG Model

yt = yt+1 � φ(rt � πt+1) + aayt

πt = βπt+1 + λyt + εp

rnott = φRrnott�1 + (1� φR)(φpπt + φyyt) + εr

rlongt = 0.10rt + 0.90rlongt+1

rt = rnott when ZLB does not bind

aayt = ρyaayt�1 + εy, aapt = εp, aart = εr

at the ZLB only change one equation

rt = �(1/β� 1) when ZLB binds

also

constraint1 = 0r < (1� 1/BETA)0
constraint_relax1 = 0rnot > (1� 1/BETA)0
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Applications

� To see how the method works in practice, consider running the following
examples in occbin_estimation_webncgg_rlong

1. runsim_cgg_generate_fakedata.m (solves model, generates artificial time series)
2. run_filter_cgg (solves the inversion problem and filters shocks)
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Intro: A Baby Example

We have n = 5 independent observations from the normal distribution for the
variable zt, mean zero (known) and unit standard deviation (known).

z = [�0.5925, 0.3298,�0.9984, 1.8028,�0.5416]

What is the likelihood of observing this sample? From the formula for the density
of an n�variate normal distribution with mean 0 and variance covariance matrix
Σ, we have

L = (2π)�T/2 jΣj�1/2 exp
�
�1

2
z0Σ�1z

�
L = (2π)�5/2 exp

�
�0.59252 + 0.32982 + 0.99842 + 1.80282 + 0.54162

2

�
= .00082948

ln L = ln 8. 294 8� 10�4 = �7. 094 7

Estimation of DSGE models requires knowing (or remembering) all of the above,
plus a lot of practice, and a few other things.
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Why is it called Estimation? We did not Estimate Anything...

Treat the likelihood as a function of Σ. Then can write it as

L = L (zT, Σ)

L : likelihood of observing particular sequence zT as function of the parameter Σ.
Estimate of Σ is the value that maximizes the likelihood function above.
In this case, the likelihood function is the plot to left. Most often, with DSGE
models, you end up with a likelihood that looks like the one on the right.
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General Problem

1. Consider solution of a DSGE model

xt = F (µ) xt�1 +G (µ) vt

zt = H0xt

E (Gvv0G0) = Q. F and G are functions of vector of model parameters µ.
dim (x) = m� 1, dim(z) = n� 1, dim(H) = m� n. Let

Ptjt�1 � E
�

xt � xtjt�1

� �
xt � xtjt�1

�0
2. We are interested in estimating unknown parameters in vector µ based on a

sample observations about zT � fztgT
t=1

3. Define as ML estimates of the model the values of µ that maximize the
likelihood associated with a particular sample of realizations of z over time.

4. Likelihood associated with particular realization of z at time t as L
�
ztjzt�1� .

Sequence of conditional likelihoods
�

L
�
ztjzt�1�	T

t=1 is independent over
time, thus

L
�

zT
�
= ΠT

t=1L
�

ztjzt�1
�

5. L
�
zT� is the likelihood of our model. But, how do we compute L

�
ztjzt�1�?
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Writing Down the Likelihood: All Variables are Observed (1)

� All the variables in x are “observed” (z = x). In that case (provided
#shocks=#observables), calculation of the likelihood proceeds as in standard
econometric textbooks.

� Conditional on
n

xj

ot�1

j=1
, note that the optimal forecast of xt is given by

bxt = Fxt�1

so that the error in predicting xt is

bet = xt � Fxt�1

conditional likelihood associated with a realization of xt can be assessed as
the likelihood assigned to bet by its pdf

L
�

xtjxt�1
�
= pe (bet)
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Writing Down the Likelihood: All Variables are Observed (2)

� The likelihood evaluation begins by inserting x1 into its unconditional
distribution, which is N (0, Q) , hence

L (x1jµ) = (2π)�m/2
���Q�1

���1/2
exp

�
�1

2

�
x01Q�1x1

��
then, for t = 2, ..., T, we have

L (xtjµ) = (2π)�m/2
���Q�1

���1/2
exp

�
�1

2
(xt � Fxt�1)

0 Q�1 (xt � Fxt�1)

�
� Finally the sample likelihood is the product of the individual likelihoods.

L (xjµ) = ΠT
t=1L (xtjµ)
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Writing Down the Likelihood: Some Variables are not Observed(1)

� The more complicated case is when n < m. In this case, one need to find a
way to infer the value of x from observations on z. Inferring the values of x is
essential to calculate the likelihood of z.

� To do so, we use in practice a particular algorithm (the Kalman filter) which
is used to produce assessment of the conditional probability L

�
ztjzt�1�

associated with the time-t observation zt, given the history of past

realizations zt�1 �
n

zj

ot�1

j=1
.

� Hidden states and observables are described by a state space system that is
perturbed at each point by Gaussian shocks with zero mean and known
covariances.

� The next slides sketch a recursive version of the Kalman filtering problem
that allows computing recursively the likelihood of a model.
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Writing Down the Likelihood: Some Variables are not Observed (2)

Computation is recursive: start at time 0, where we can calculate the following:

� z1j0: Conditional expectation of z1 (the vector of unobservables that enter the
computation of the likelihood) given observations on z0

� z1: Actual observations on z1
� x1j0 : Conditional expectation of x1 given observations on z0

At time zero, we want to derive the best estimate of x1.
� The key question is how to estimate x1 given x1j0 and z1.

Using xt = Fxt�1 +Gvt and Ptjt�1 � E
��

xt � xtjt�1

� �
xt � xtjt�1

�0�
x1j0 = 0

P1j0 = FP1j0F0 +Q

� This way, one can construct associated values for observables z, given by:

z1j0 = H0x1j0 = 0

Ω1j0 = E
��

z1 � z1j0
� �

z1 � z1j0
�0�

= H0P1j0H ! innovation covariance
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Writing Down the Likelihood: Some Variables are not Observed (3)

� The two objects above are used to compute the likelihood function of z1,
which is a normal variable with mean z1j0 and variance Ω1j0, that is

z1˜N
�

z1j0, Ω1j0
�

L (z1jµ) = (2π)�m/2
���Ω�1

1j0

���1/2
exp

�
�1

2

�
z01Ω�1

1j0z1

��
.

� Next, the values of x1j0 and P1j0 are updated to construct new updates of
x1j1 � x1 and P1j1 � P1.

x1j1 = x1j0
old value

+ P1j0HΩ�1
1j0

Kalman gain

�
z1 � z1j0

�
prediction error

! updated state estimate

P1j1 = P1j0 � P1j0HΩ�1
1j0H0P1j0 ! updated covariance estimate
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Writing Down the Likelihood: Some Variables are not Observed (4)

The term K1 � P1j0HΩ�1
1j0 denotes the Kalman gain matrix. It is a minimum-mean square

estimator that yields the best prediction of x1 given estimates of x1j0, z1 and z1j0. It can be
derived as follows; consider the covariance matrix of x1, P1j1

P1j1 = E

"
(x1

actual
� x1j1)

mean

�
x1 � x1j1

�0#
use x1j1 = x1j0 + K1

�
z1 � z1j0

�
for some K1 to be determined

P1j1 = cov
�

x1 � x1j0 � K1

�
z1 � z1j0

��
= P1j1 = cov

�
x1 � x1j0 � K1H0

�
x1 � x1j0

��
P1j1 = E

h�
I� K1H0

�
P1j0

�
I� K1H0

�0i
Minimize the expected value of the square of the magnitude of this vector.

min
K1

trace
�

P1j1
�
! K1 = P1j0HΩ�1

1j0
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Writing Down the Likelihood: Some Variables are not Observed (4)

Next, for every other period t = 2, ..., T, we have:

xtjt�1 = Fxt�1

Ptjt�1 = FPtjt�1F0 +Q

ztjt�1 = H0xtjt�1

Ωtjt�1 = H0Ptjt�1H

L (ztjµ) = (2π)�m/2
���Ω�1

tjt�1

���1/2
exp

�
�1

2

��
zt � ztjt�1

�0
Ω�1

tjt�1

�
zt � ztjt�1

���
xtjt = xtjt�1 + Ptjt�1HΩ�1

tjt�1

�
zt � ztjt�1

�
Ptjt = Ptjt�1 � Ptjt�1HΩ�1

tjt�1H0Ptjt�1

L (zjµ) = ΠT
t=1L (ztjµ)
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Bayesian Estimation

� Classical estimation: parameters treated as fixed but unknown, and
likelihood function is interpreted as sampling distribution from data.
Realizations of z interpreted as one possible realizations from L (zjµ).
Inferences on µ are statements regarding probabilities associated with
particular realizations of z given µ.

� Bayesian estimation: observations on z treated as given. Make inferences
about distribution of µ conditional on z. Probabilistic interpretation of µ
allows incorporating judgements on µ through prior distribution π (µ) .

� From the definition of joint probability, we have that:

p (µ, z) = L(zjµ)π (µ)
reversing the role of µ and z gives

p (z, µ) = P (µjz) p (z) .

Solving for P (µjz) gives

P (µjz)
posterior

=
L(zjµ)π (µ)

p (z)
∝ L(zjµ)

likelihood
π (µ)
prior

where p (z) is a constant from the point of view of the distribution for µ
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Applications to DSGE Models

We consider three examples of estimation. Dynare files are on the course
webpage.

1. The toy model

2. A model with a Phillips curve (identification)

3. A richer dynamic-new-keynesian model

Do not attempt anything more complicated than this until you have fully
mastered these examples.



1. DSGE 2. occbin 3. Occbin app 4. Estimation with OccBin 5. Linear Estimation

1. Toy Model

� The model is described by
yt = et

where et is an exogenous iid shock with zero mean and unknown variance
σ2. We want to estimate σ. In principle, we can impose a prior on the
distribution of σ and combine it with information from the data on y.

� See basic_estimation
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2. Phillips curve

� Model is

πt = βEtπt+1 + kyt

yt = ρyt�1 + et, et � N
�

0, σ2
�

� Assume our only obervable is πt. The solution to our model takes the form

xt = Fxt�1 +Gvt

zt = H0xt

xt =
�

πt yt
�0 , zt = [πt] , vt = [et]

F =

"
0 κρ

1�βρ

0 ρ

#
, G =

� κ
1�βρ

1

�
, H =

�
1
0

�
� Note the rational expectations solution for πt

πt = ρπt�1 +
κ

1� βρ
εt

� Estimation will recover ρ, and only one parameter among β, σε and κ. ML
will fail to recover separately estimates of κ,β, σε. (see toy_pc)
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3. New Keynesian Model

� Consider the following log-linear model for output y, inflation π and the
nominal interest rate R. iid shocks are g and u

yt = Etyt+1 � Rt + Etπt+1 + gt

πt = kyt + βEtπt+1 + ut

Rt = φπt

� Solution is (toy_dnk)

yt =
1

1+ φk
gt �

φ

1+ φk
ut, πt =

k
1+ φk

gt +
1

1+ φk
ut

� Estimation cannot recover β, and at most three parameters among σg, σu, φ
and k. To think about why, the series are iid, and all that enters the likelihood
function is their variance and their covariance.

var (y) =
1

(1+ φk)2
σ2

g +
φ2

(1+ φk)2
σ2

u; var (π) =
k2

(1+ φk)2
σ2

g +
1

(1+ φk)2
σ2

u

cov (y, π) =
k

(1+ φk)2
σ2

g �
φ

(1+ φk)2
σ2

u
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MCMC

� Key computational problem: how to compute the distribution of µ,
P (µjz) : standard Monte Carlo integration techniques cannot be used,
because one cannot draw random numbers directly from P (µjz) .

� Typically, we use Markov Chain Monte Carlo (MCMC) techniques, in
particular the Metropolis-Hastings algorithm which is a particular version of
the MCMC algorithm. The idea of the algorithm is to explore the distribution
and to weigh to outcomes appropriately.

See Chapter 9 in Dejong and Dave for more details.
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Basic Idea of the Kalman Filter

� Consider the following system

st = Fst�1 +Gωt, ωt � N (0, Q) (state_equation)

yt = Hst + vt, vt � N (0, R) (measurement_equation)

yt is observed, everything else is not
� Problem: want to compute the following objects

likelihood function of yT

recover from the yT the sequences of sT,ωT, vT

� Note that the above implies

yt = HFst�1 +HGωt + vt

in order to compute yt, we need to know st�1, ωt, vt
The Kalman filter offers a way to go compute s, ω, v, and therefore to
compute the likelihood of yT.

� Inputs (yt, H, F, G)�� > Output
�
ωT, sT, vT, Q, R

�
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The Workings of the filter

� Suppose we are in t, and know st�1 as well as its covariance matrix Σt�1. At
that point, we are interested in computing an estimate of st given surprises in
yt

st = Et�1st + Kt (yt � Et�1yt)

� Note that
st = Et�1st + Kt (yt �HEt�1st)

� Think of the best Kt as solving a minimization problem. It tells you how
much you want to change your estimate given a measurement.
Intuitively, the more yt changes, the more likely it is that you want to change
st (Kt large)

� So, how do we derive Kt
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Deriving K

� Start with estimates of Et�1Σt, Et�1st, together with yt. Then

Kt = Et�1ΣtH0
�
HEt�1ΣtH0 + R

��1

Σt = Et�1Σt � KtHEt�1Σt

st = Et�1st + Kt (yt �HEt�1st)

EtΣt+1 = FΣtF0 +GQG0

Etst+1 = Fst

� At this point, we are in t+ 1 and we can start again.
� Typically Et�1Σt = Σ�, Et�1st = s
� The formula for Kt is the outcome of a minimization problem where we try

to minimize the squared forecast error of st
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